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Preface

Research in the field of gene regulation is evolving rapidly in an ever-changing sci-
entific environment. Microarray techniques and comparative genomics have enabled
more comprehensive studies of regulatory genomics and are proving to be powerful
tools of discovery. The application of chromatin immunoprecipitation and microarrays
(chIP-on-chip) to directly study the genomic binding locations of transcription factors
has enabled more comprehensive modeling of regulatory networks. In addition, com-
plete genome sequences and the comparison of numerous related species has demon-
strated that conservation in non-coding DNA sequences often provides evidence for
cis-regulatory binding sites. That said, much is still to be learned about the regulatory
networks of these sequenced genomes.

Systematic methods to decipher the regulatory mechanism are also crucial for cor-
roborating these regulatory networks. The core of these methods are the motif discovery
algorithms that can help predict cis-regulatory elements. These DNA-motif discovery
programs are becoming more sophisticated and are beginning to leverage evidence from
comparative genomics (phylogenetic footprinting) and chIP-on-chip studies. How to
use these new sources of evidence is an active area of research.

The first RECOMB Regulatory Genomics workshop exceeded the organizers’ ex-
pectations. More than 130 attendees enjoyed many excellent talks from leading re-
searchers in the field. Ideas were shared during active discussion time between talks
and hopefully many collaborations were born. This preceedings contains ten original
manuscripts presented by the authors during the workshop. The organizers for the first
annual Regulatory Genomics workshop would like to thank all the speakers and par-
ticipants for their interest and participation in this meeting. The 1st Annual RECOMB
Satellite Workshop on Regulatory Genomics would not have been possible without the
generous support of UC Discovery and Cal-IT2.

Eleazar Eskin
Alkes Price

Ben Raphael
Chris Workman
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Predicting Genetic Regulatory Response
Using Classification: Yeast Stress Response

Manuel Middendorf, Anshul Kundaje, Chris Wiggins,
Yoav Freund, and Christina Leslie

Columbia University, New York NY 10027, USA
{mjm2007,chris.wiggins}@columbia.edu

{abk2001,freund,cleslie}@cs.columbia.edu

Abstract. We present a novel classification-based algorithm called GeneClass
for learning to predict gene regulatory response. Our approach is motivated by
the hypothesis that in simple organisms such as Saccharomyces cerevisiae, we
can learn a decision rule for predicting whether a gene is up- or down-regulated
in a particular experiment based on (1) the presence of binding site subsequences
(“motifs”) in the gene’s regulatory region and (2) the expression levels of regula-
tors such as transcription factors in the experiment (“parents”). Thus our learning
task integrates two qualitatively different data sources: genome-wide cDNA mi-
croarray data across multiple perturbation and mutant experiments along with
motif profile data from regulatory sequences. Rather than focusing on the re-
gression task of predicting real-valued gene expression measurements, GeneClass
performs the classification task of predicting +1 and -1 labels, corresponding to
up- and down-regulation beyond the levels of biological and measurement noise
in microarray measurements. GeneClass uses the Adaboost learning algorithm
with a margin-based generalization of decision trees called alternating decision
trees. In computational experiments based on the Gasch S. cerevisiae dataset,
we show that the GeneClass method predicts up- and down-regulation on held-
out experiments with high accuracy. We explore a range of experimental setups
related to environmental stress response, and we retrieve important regulators,
binding site motifs, and relationships between regulators and binding sites that
are known to be associated to specific stress response pathways. Our method thus
provides predictive hypotheses, suggests biological experiments, and provides in-
terpretable insight into the structure of genetic regulatory networks.

Supplementary website: http://www.cs.columbia.edu/compbio/geneclass

1 Introduction

Understanding the underlying mechanisms of gene transcriptional regulation through
analysis of high-throughput genomic data has become an important current research
area in computational biology. For simpler model organisms such as S. cerevisiae, there
have been numerous computational approaches that combine gene expression data from
microarray experiments and regulatory sequence data to solve different problems in
gene regulation: identification of regulatory elements in non-coding DNA [1, 2], dis-
covery of co-occurrence of regulatory motifs and combinatorial effects of regulatory

E. Eskin, C. Workman (Eds.): RECOMB 2004 Ws on Regulatory Genomics, LNBI 3318, pp. 1–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 Manuel Middendorf et al.

molecules [3], and organization of genes that appear to be subject to common regula-
tory control into “regulatory modules” [4, 5]. Most of the recent studies can be placed
broadly in one of three categories: statistical approaches, which aim to identify sta-
tistically significant regulatory patterns in a dataset [1, 3, 4]; probabilistic approaches,
which try to discover structure in the dataset as formalized by probabilistic models (of-
ten graphical models or Bayesian networks) [5–9]; and linear network models, which
hope to learn explicit parameterized models for pieces of the regulatory network by fit-
ting to data [10, 11]. While these approaches provide useful exploratory tools that allow
the user to generate biological hypotheses about transcriptional regulation, in general,
they are not yet adequate for making accurate predictions about which genes will be
up- or down-regulated in new or held-out experiments. Since these approaches do not
emphasize prediction accuracy, it is difficult to directly compare performance of the
different algorithms or decide, based on cross-validation experiments, which approach
is most likely to generate plausible biological hypotheses for testing in the lab.

In the current work, we present an algorithm called GeneClass that learns a predic-
tion function for the regulatory response of genes under different experimental condi-
tions. The inputs to our learning algorithm are the gene-specific regulatory sequences
– represented by the set of binding site patterns they contain (“motifs”) – and the
experiment-specific expression levels of regulators (“parents”). The output is a pre-
diction of the expression state of the regulated gene. Rather than trying to predict a
real-valued expression level, we formulate the task as a binary classification problem,
that is, we predict only whether the gene is up- or down-regulated. This reduction al-
lows us to exploit modern and effective classification algorithms. GeneClass uses the
Adaboost learning algorithm with a margin-based generalization of decision trees called
alternating decision trees (ADTs). Boosting, like support vector machines, is a large-
margin classification algorithm that performs well for high-dimensional problems. We
evaluate the performance of our method by measuring prediction accuracy on held-out
microarray experiments, and we achieve very good classification results in this setting.
Moreover, we can analyze the learned prediction trees to extract significant features or
relationships between features that are associated with accurate generalization rather
than just correlations in the training data. In a range of computational experiments for
the investigation of environmental stress response in yeast, GeneClass retrieves signifi-
cant regulators, binding motifs, and motif-regulatory pairs that are known to be associ-
ated with specific stress response pathways.

Among recent statistical approaches, the most revelant method related to GeneClass
is the REDUCE algorithm of Bussemaker et al. [1] for regulatory element discovery.
Given gene expression measurements from a single microarray experiment and the reg-
ulatory sequence Sg for each gene g represented on the array, REDUCE proposes a
linear model for the dependence of log gene expression Eg on presence of regulatory
subsequences (or “motifs”) Eg = C +

∑
μ∈Sg

FμNμg, where Nμg is a count of occur-
rences of regulatory subsequence μ in sequence Sg , and the Fμ are experiment-specific
fit parameters. GeneClass generalizes beyond the conditions of a single experiment by
using paired (motifg,parente) features, where the parent variable represents over- or
under-expression of a regulator (transcription factor, signaling molecule, or protein ki-
nase) in the experiment e, rather than using motif information alone. Note, however,
that GeneClass uses classification rather than regression as in REDUCE.
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Restriction to a candidate set of potential parents has also been used in the proba-
bilistic model literature, including in the regression-based work of Segal et al. for parti-
tioning target genes into regulatory modules for S. cerevisiae [5]. Here, each module is
a probabilistic regression tree, where internal nodes of the tree correspond to states of
regulators and each leaf node prescribes a normal distribution describing the expression
of all the module’s genes given the regulator conditions. The authors provide some val-
idation on new experiments by establishing that the target gene sets of specific modules
do have statistically significant overlap with the set of differentially expressed genes;
however, they do not focus on making accurate predictions of differential expression as
we do here. Our GeneClass method retains the distinction between regulator (“parent”)
genes and target (“child”) genes, as well as a model that can capture combinatorial
relationships among regulators; however, the margin-based GeneClass trees are very
different from probabilistic trees. Unlike in [5], we learn from both expression and se-
quence data, so that the influence of a regulator is mediated through the presence of a
regulatory sequence element. We note that in separate work, Segal et al. [6] present a
probabilistic model for combining promoter sequence data and a large amount of ex-
pression data to learn transcriptional modules on a genome-wide level in S. cerevisiae,
but they do not demonstrate how to use this learned model for predictions of regulatory
response.

The current work follows up on our original paper introducing the GeneClass al-
gorithm for prediction of regulatory response [12]. Here, we report additional compu-
tational experiments and more detailed biological validation for specific environmental
stress responses (Section 4.3). Due to space constraints, we omit some algorithmic de-
tails and refer the reader to the earlier presentation and to additional results available at
the supplementary website: http://www.cs.columbia.edu/compbio/geneclass.

2 Learning Algorithm

2.1 Adaboost

The underlying classification algorithm that we use is Adaboost, introduced by Freund
and Schapire [13], which works by repeatedly applying a simple learning algorithm,
called the weak or base learner, to different weightings of the same training set. For
binary prediction problems, Adaboost learns from a training set that consists of pairs
(x1, y1), (x2, y2), . . . , (xm, ym), where xi corresponds to the features of an example
and yi ∈ {−1, +1} is the binary label to be predicted, and maintains a weighting that
assigns a non-negative real value wi to each example (xi, yi). On iteration t of the boost-
ing process, the weak learner is applied to the training set with weights wt

1, . . . , w
t
m and

produces a prediction rule ht that maps x to {0, 1}. The rule ht(x) is required to have
a small but significant correlation with the labels y when measured using the current
weighting. After the function ht is generated, the example weights are changed so that
the weak predictions ht(x) and the labels y are decorrelated. The weak learner is then
called with the new weights over the training examples and the process repeats. Finally,
one takes a linear combination of all the weak prediction rules to obtain a real-valued
strong prediction function or prediction score F (x). The strong prediction rule is given
by sign(F (x)):
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F0(x) ≡ 0
for t = 1 . . . T

wt
i = exp(−yiFt−1(xi))

Get ht from weak learner

αt = ln
( ∑

i:ht(xi)=1,yi=1 wt
i∑

i:ht(xi)=1,yi=−1 wt
i

)
Ft+1 = Ft + αtht.

One can prove that if the weak rules are all slightly correlated with the label, then
the strong rule learned by Adaboost will have a very high correlation with the label – in
other words, it will predict the label very accurately. Moreover, one often observes that
the test error of the strong rule (percentage of mistakes made on new examples) contin-
ues to decrease even after the training error (fraction of mistakes made on the training
set) reaches zero. This behavior has been related to the concept of a “margin”, which
is simply the value yF (x) [14]. While yF (x) > 0 corresponds to a correct prediction,
yF (x) > a > 0 corresponds to a confident correct prediction, and the confidence in-
creases monotonically with a. Our experiments in this paper demonstrate the correlation
between large margins and correct predictions on the test set (see Section 4).

2.2 ADTs for Predicting Regulatory Response

Adaboost is often used with a decision tree learning algorithm as the base learning
algorithm. For the problem of predicting regulatory response, we use a form of Ad-
aboost that produces a single tree-based decision rule called an alternating decision
tree (ADT) [15]. More details on learning ADTs for regulatory response can be found
in [12].

Briefly, in our problem setting, we begin with a candidate set of motifs μ repre-
senting known or putative regulatory element sequence patterns and a candidate set of
regulators or parents π. For each (gene,experiment) example in our gene expression
dataset, we have two sources of feature information relative to the candidate motifs and
candidate parent sets: a vector Nμg of motif counts of occurrences of patterns μ in the
regulatory sequence of gene g, and the vector πe ∈ {−1, 0, 1} of expression states for
parent genes π in the experiment e. The data representation is depicted in Figure 1 (A).

Figure 1 (B) shows a toy example of an ADT that could be produced by Adaboost in
our setting. An ADT consists of alternating levels of prediction nodes (ovals) – which
contain real-valued contributions to the prediction scores – and splitter nodes (rectan-
gles) – which contain true/false conditions. To obtain the prediction score F (x) for a
particular example x, we sum the values in all prediction nodes that we can reach along
all paths down from the root corresponding to yes/no decisions consisent with x.

Splitter nodes in our ADTs depend on decisions based on (motif,parent) pairs. How-
ever, instead of splitting on real-valued thresholds of parent expression and integer-
valued motif count thresholds, we consider only whether a motif μ is present or not, and
only whether a parent π is over-expressed (or under-expressed) in the example. Thus,
splitter nodes make boolean decisions based on conditions such as “motif μ is present
and regulator π is over-expressed (or under-expressed)”. Paths in the learned ADT cor-
respond to conjunctions (AND operations) of these boolean (motif,parent) conditions.
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(A) (B)

Fig. 1. Boosting ADTs for regulatory response prediction. In (A), we show the data presentation
for our problem. Every (target gene,experiment) is assigned a label of +1 (up-regulated, in red) or
-1 (down-regulated, in green) and represented by the gene’s vector of motif counts (only binary
values shown here) and the experiment’s vector of regulator expression states. A toy example of
an ADT is shown in (B)

Full details on selection of the candidate motifs and regulators and discretization into
up and down states is given in Section 3.

In terms of Adaboost, each prediction node represents a weak prediction rule, and
at every boosting iteration, a new splitter node together with its two prediction nodes is
introduced. The splitter node can be attached to any previous prediction node, not only
leaf nodes. In general, more important decision rules are added at early iterations. We
use this heuristic to analyze the ADTs and identify the most important factors in gene
regulatory response.

3 Methods

Dataset: We use the Gasch et al. [16] environmental stress response dataset, consist-
ing of cDNA microarray experiments measuring genomic expression in S. cerevisiae
in response to diverse environmental transitions. There are a total of 6110 genes and
173 experiments in the dataset, with all measurements given as log2 expression values
(fold-change with respect to unstimulated reference expression). We do not perform a
zero mean and unit variance normalization over experiments, since we must retain the
meaning of the true zero (no fold change).

Motif set: We obtain the 500 bp 5’ promoter sequences of all S. cerevisiae genes
from the Saccharomyces Genome Database (SGD). For each of these sequences, we
search for transcription factor (TF) binding sites using the PATCH software licensed by
TRANSFAC [17]. The PATCH tool uses a library of known and putative TF binding
sites, some of which are represented by position specific scoring matrices and some by
consensus patterns, from the TRANSFAC Professional database. A total of 354 binding
sites are used after pruning to remove redundant and rare sites.
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Parent set: We compile different sets of candidate regulators to study the performance
and dependence of our method on the set of regulators. We restrict ourselves to a su-
perset of 475 regulators (consisting of transcription factors, signaling molecules and
protein kinases), 466 of which are used in Segal et al. [5] and 9 generic (global) regu-
lators obtained from Lee et al. [18].

Due to computational limitations on the number of (motif,parent) features we could
use in training, we select smaller subsets of regulators based on the following selection
criteria. We use 13 high-variance regulators that had a standard deviation (in expression
over all experiments) above a cutoff of 1.2. The second subset consists of the 9 global
regulators that are present in the Lee et al. studies but absent in the candidate list of
Segal et al. We also include 30 regulators that are found to be top ranking regulators for
the 50 clusters identified in Segal et al. The union of these three lists gives 53 unique
regulators.

Target set and label assignment: We discretize expression values of all genes into three
levels representing down-regulation (-1), no change (0) and up-regulation (+1) using
cutoffs based on the empirical noise distribution around the baseline (0) calculated from
the three replicate unstimulated (time=0) heat-shock experiments [16]. We observe that
95% of the samples in this distribution had expression values between +1.3 and −1.3.
Thus we use these cutoffs to decide what we define as significantly up-regulated (+1)
and down-regulated (-1) beyond the levels of biological and experimental noise in the
microarray measurements.

Note that, although we train only on those (gene,experiment) pairs which discretize
to up- or down-regulated states, we can test (make predictions) on every example in a
held-out experiment by thresholding on predicted margins. That is, we predict baseline
if a prediction has margin below threshold (see Section 4)).

We reduce our target gene list to a set of 1411 genes which include 469 highly
variant genes (standard deviation > 1.2 in expression over all experiments) and 1250
genes that are part of the 17 clusters identified by Gasch et al. [16] using hierarchical
clustering (eliminating overlaps).

Software: We use the MLJAVA software developed by Freund and Schapire [19] which
implements the ADT learning algorithm. We use the text-feature in MLJAVA to take
advantage of the sparse motif matrix and use memory more efficiently.

4 Experimental Results

4.1 Cross-Validation Experiments

We first perform cross-validation experiments to evaluate classification performance
on held-out experiments. We divide the set of 173 microarray experiments into 10
folds, grouping replicate experiments together to avoid bias, and perform 10-fold cross-
validation experiments using boosting with ADTs on all 1411 target genes.

We train the ADTs for 400 boosting iterations, during most of which test-loss de-
creases continuously. We obtain an accuracy of 88.5% on up- and down-regulated ex-
amples averaged over 10 folds (test loss of 11.5%), showing that predicting regulatory
response is indeed possible in our framework.
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To assess the difficulty of the classification task, we also compare to a baseline
method, k-nearest neighbor classification (kNN), where each test example is classified
by a vote of its k nearest neighbors in the training set. For a distance function, we
optimize the weighted sum of Euclidean distances for motif and parent vectors, trying
values of k < 20 and both binary or integer representations of the motif data (see [12]).
We obtain minimum test-loss of 31.3% at k=19 and with integer motif counts, giving
much poorer performance than boosting with ADTs.

Since ADTs output a real-valued prediction score F (x) whose absolute value mea-
sures the confidence of the classification, we can predict a baseline label by threshold-
ing on this score, that is, we predict examples to be up- or down-regulated if F (x) > a
or F (x) < −a respectively, and to be baseline if |F (x)| < a, where a > 0. Fig-
ure 2 (A) shows expression values versus prediction scores for all examples (up, down,
and baseline) from the held-out experiments using 10-fold cross-validation. The plot
shows a high correlation between expression and prediction, reminiscent of the actual
regression task. Assigning thresholds to expression and prediction values binning the
examples into up, down and baseline we obtain the confusion matrix in Figure 2 (B).

(A)

Predicted Bins
Down Baseline Up

Down 16.5% 8.9% 1.5%
True Bins Baseline 9.3% 32.4% 6.3%

Up 2.8% 9.9% 12.0%

(B)

Fig. 2. True expression values versus prediction scores F (x). The scatter plot (A) shows a high
correlation between prediction scores (x-axis) and true log expression values (y-axis) for genes
on held-out experiments. The confusion matrix (B) gives truth and predictions for all genes in
the held-out experiments, including those expressed at baseline levels. Examples are binned by
assigning a threshold a = ±0.5 to expression and prediction scores

4.2 Extracting Features for Biological Interpretation

We describe below several approaches for extracting important features from the
learned ADT model, and we suggest ways to relate these features to the biology of
gene regulation.

Extracting significant features: We rank motifs, parents and motif-parent pairs by two
main methods. The iteration score (IS) of a feature is the boosting iteration during which
it first appears in the ADT. This ranking scheme appears to be useful in identifying
important motifs and motif-parent pairs (restricting to iteration scores < 50), since
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features selected at early rounds tend to be most significant. The abundance score (AS)
of a regulator in the number of nodes in the final tree that include the regulator as the
parent in a motif-parent parent. A regulator with a large abundance score will affect
a large number of paths through the ADT and hence affect a large number of target
genes. If the state of a regulator is changed through stress response or knockout, its
predicted effect on target genes will depend on its abundance in the ADT. Note that
presence of a strong motif-parent feature does not necessarily imply a direct binding
relationship between parent and motif. Such a pair could represent an indirect regulatory
relationship or some other kind of predictive correlation, for example, co-occurrence of
the true binding site with the motif corresponding to the feature.

“In silico” knock-outs: By removing a candidate from the regulator list and retraining
the ADT, we can evaluate whether test loss significantly decreases with omission of the
parent and identify other weaker regulators that are also correlated with the labels. We
investigate in silico knock-outs in the biologically-motivated experiments described in
Section 4.3

4.3 Biological Validation Experiments

We designed the following four training and test sets of selected microarray experi-
ments to study the response to specific types of stress. By comparative analysis of the
trees learned from these sets, we find and validate regulators that are associated to reg-
ulation programs activated by different stresses. More detailed results can be found on
the supplementary website.

Heat-shock and osmolarity stress response: In the first study, we train on heat-shock,
osmolarity, heat-shock knockouts, over-expression, amino acid starvation experiments,
and we test on stationary phase, simultaneous heat-shock and hypo-osmolarity experi-
ments.

We observe a low test loss of 9.3%, supporting the hypothesis that pathways in-
volved in heat-shock and osmolarity stress appear to be independent and the joint re-
sponse to both stresses can be predicted easily. This result agrees with the observation
by Gasch et al. [16] that these two environmental stresses have nearly additive effects
on gene expression of environmental stress response (ESR) genes. The high test accu-
racy also supports the observation by Gasch et al. [16] that the response as well as parts
of the underlying regulatory mechanisms for stationary phase induction (test set) are
similar to that of heat-shock (training set).

The top five high scoring parents (based on AS) were USV1, XBP1, PPT1, GIS1
and TPK1. These regulators are known or believed to play specific important roles in
each of the training and test set stresses. Segal et al. [5] specifically identify USV1 as
an important regulator in stationary phase (test set) and PPT1 to be important in the
response to osmolarity stress (training set).

The top ranking motif (based on IS) was the STRE element of MSN2/MSN4, a
known regulatory element for a significant number of general stress response genes
[16]. The connection of the osmolarity response to the HOG and other MAP kinase
pathways is well known. Also, the osmolarity response is strongly related to glycerol
metabolism and transport and hence closely associated with gluconeogenesis and glu-
cose metabolism pathways. We find the binding sites of CAT8 (gluconeogensis), GAL4
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(galactose metabolism), MIG1 (glucose metabolism and regulator of osmosensitive
glycerol uptake) [20], GCN4 (regulator of HOG pathway and amino acid metabolism),
HSF1 (heat-shock factor), CHA4 (amino acid catabolism), MET31 (methionine biosyn-
thesis) and RAP1 to have high iteration scores; these regulators are all related to the
stress conditions in the training set.

Fig. 3. Comparison of expression profiles (173 experiments) of USV1, MSN2, HSF1 and PPT1.
The mRNA expression levels of USV1 and PPT1 are informative, with about 50% and 35% of
experiments (respectively) showing over 2 fold expression change over wildtype. The espression
levels for MSN2 and HSF1 fall mostly in the baseline state, with only about 6% and 5% of
experiments (respectively) showing at least 2 fold expression change. While MSN2 and HSF1
are not identified as high scoring parents in the learned trees, their binding sites occur as high
scoring motifs

It is interesting to note that while the presence of binding sites of some very impor-
tant stress factors like MSN2 and HSF1 (heat shock factor) are identified as significant
features (high motif iteration score) in the ADT, the mRNA expression levels of these
regulators do not seem to be very predictive. HSF1 does not appear as a parent and
MSN2 gets low abundance and iteration scores as a parent, despite their importance as
heat-shock and general stress response regulators respectively. Similar results are ob-
served in the modules of [5], where HSF1 is not found in any of the regulation programs
and MSN2 is found in 3 of the 50 regulation programs but with low significance. If we
compare the expression profiles of HSF1, MSN2, USV1 and PPT1, we find that the
mRNA levels of MSN2 and HSF1 have small fluctuations (rarely greater than 2 fold
change) and fall mostly within the baseline state, while the expression levels of USV1
or PPT1 show much larger variation over many experiments (see Figure 3). It is known
that the activity of MSN2 is regulated by TPK1 (a kinase) via cellular localization.
TPK1 is identified as an important parent in the ADT (AS) and is found associated with
the MSN2 binding site as a motif-parent pair. Thus in this case, where the activity of
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a regulator is itself regulated post-transcriptionally, we see a clear advantage of using
motif data along with mRNA expression data.

USV1 “in silico” knockout for heat-shock and osmolarity stress: Using the same train-
ing and test microarrays as in the heat-shock/osmolarity setup, we perform a second
study by removing one of the strong regulators, USV1, from the parent set and retrain-
ing the ADT. We get a minor but significant increase in test error from 9.3% to 11%.

TPK1 in the upregulated state along with the MSN2/MSN4 binding site is the top
scoring feature (IS). TPK1 is also the top scoring regulator based on abundance.

We also study target genes that change label from correct to incorrect due to the
removal of USV1. We reason that since these genes require presence of USV1 in the
ADT for correct prediction of their regulatory response, they are highly dependent on
USV1 activity and provide good candidates for downstream targets of regulatory path-
ways involving the knocked out parent. We find that 305 target genes change prediction
labels. GO annotation enrichment analysis of these target genes reveal the terms cell
wall organization and biogenesis, heat-shock protein activity, galactose, acetyl-CoA
and chitin metabolism and tRNA processing and cell-growth. These match many of
the terms (namely transcription factors, nuclear transport, cell wall and transport sporu-
lation and cAMP pathway, RNA processing, cell cycle, energy, osmotic stress, protein
modification and trafficking, cell differentiation) enriched by analyzing GO annotations
of genes that changed significantly in a microarray experiment by [5] with stationary
phase induced in a USV1 knockout.

Peroxide, superoxide stress, and pleiotropic response to diamide: For the third study,
we train on heat-shock, heat-shock knockouts, over-expression, H2O2 wild-type and
mutant, menadione, DTT experiments, and we test on diamide experiments. Gasch et
al. [16] consider the diamide response to be a composite of responses to the experi-
ments in the training set. We observe a moderate test loss of 16%, suggesting that this
pleiotropic response is more complex than the simpler additive responses to heat-shock
and osmolarity.

Although USV1, XBP1 and TPK1 are the top three regulators, we see the emer-
gence of an important parent, YAP1. This factor appears to be dominant in the ADTs
of only those setups that include redox related stresses, specifically peroxide and super-
oxide stresses, in the training sets. It is well documented that YAP1 plays a significant
regulatory role in oxidation stresses, and this role correlates well with our findings. We
hypothesize that USV1 is not very important for response to diamide based on analysis
of the fourth setup below, and we attribute its presence in the ADT to the presence of
heat-shock experiments in the training set (based on the first setup). We thus simulate a
knockout by removing USV1 from the training set and retraining on the training data.
Test loss reduces dramatically from 16% to 9.2%, indicating that USV1’s presence in
the ADT is detrimental to prediction on diamide response. The ADT for this setup also
shows YAP1 associated with its binding motif as an important feature (IS).

Redox and starvation response: In this study, we train on DTT and diamide stresses
and response to nitrogen depletion and stationary phase induction. We test on diauxic
shift and amino acid starvation experiments. We observe a poor test loss of 27.9%. This
poor prediction accuracy could mean that regulatory systems active in experiments in
the training set and test set are significantly different. Gasch et al. [16] mention that the
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starvation responses are quite different from each other and significantly more complex
than other stresses (DTT, diamide stress) due to cell-cycle arrest and several secondary
effects.

Analysis of the ADT reveals YGL099W (KRE35) as the most abundant regulator.
KRE35 also scores among the top 5 candidates in other setups involving redox stresses
(such as the third setup above). It could thus be an important regulator for redox related
stresses.

We observe that the poor prediction accuracy correlates with the absence of USV1
in the ADT, which is otherwise abundant in the ADTs of all other setups. Since the first
three setups show that USV1 is an important regulator for heat-shock response, we add
the heat-shock experiments to the training set. As expected, on retraining with this new
training set, we get a very significant improvement in prediction accuracy on the same
test set (from 27.9% to 16%). This could mean that pathways involved in the heat-shock
response are an important component of the more complex response to some starvation
responses.

5 Discussion

We have shown that the GeneClass learning algorithm makes accurate predictions of
gene regulatory response in yeast over a wide range of experimental conditions. In
particular, in experiments related to environmental stress response, examination of the
learned GeneClass tree models retrieved important regulators, motifs, and regulator-
motif relationships associated with specific stress response pathways. We believe that
GeneClass provides a promising new methodology for integrating expression and reg-
ulatory sequence data to study transcriptional regulation.

One important next step is to use GeneClass to analyze larger data sets. Since the
Gasch dataset that we used here involves only environmental stress response experi-
ments, it is likely that many of the regulatory pathways are not activated and therefore
cannot be modeled by analysis of this dataset alone. We hope to extend our studies by
incorporating additional and more diverse yeast data sets currently available through
resources like NCBI’s Gene Expression Omnibus. At the same time, we plan to make
improvements in the computational efficiency of the GeneClass software to allow a sig-
nificant increase the number of parents so that we can identify the possible roles of
many additional regulators. In particular, we plan to use using data structures more ap-
propriate for our pairwise interaction features and weighted sampling to reduce the size
of the memory required for holding the training data.

A second potential advance would be a more careful treatment of the raw data.
While the ratio data (perturbation/wild type) gives a natural input variable for our anal-
ysis, better signal to noise is likely to be achieved by taking into account the expression
levels separately. In further work, we plan to use two-color noise modeling to estab-
lish expression-level specific thresholds and thus allow inclusion of more genes whose
up- or down-regulated states currently fall within the baseline category. This improve-
ment will allow more training examples and should enable us to accurately predict the
response of more subtle target genes.

A third direction for improvement would be to treat parent and child expression
levels as continuous (rather than binary) quantities. Similarly, the number of motifs in
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the regulatory region, rather than merely their presence/absence, could be taken into
account. While these refinements could potentially yield more realistic models, it is
important that they be represented in a way that is informative for the learning problem
and avoids overfitting.
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Abstract. This paper presents a method for predicting biologically meaningful
modules of transcription factors. For this purpose, we employ the CORG database
of conserved transcription factor binding sites. We aim at enhancing the power of
in-silico binding site predictions by employing three crucial constraints. First, we
rely on conserved promoter regions of orthologous genes in human and mouse,
second we look for synergistic transcription factor modules which bind upstream
regions preferentially together, and finally we restrict our results to those mod-
ules, whose genes have a significant functional overlap. Many of our predicted
binding sites coincide with known biological facts as is evidenced by a direct
comparison with a single large-scale experiment for E2F binding. We also identi-
fied known combinations of transcription factors with a functional enrichment in
the set of their shared target genes. Several new modules are suggested for exper-
imental investigation. Finally we study the transcription factor network and sug-
gest a classification of transcription factors according to their regulatory power
and control.

1 Introduction

Deciphering mechanisms of gene regulation is a major challenge in functional ge-
nomics. Bioinformatics supports this task in various ways. Here we report on our ap-
proach to find putative transcription factor binding sites, synergistic relations of binding
sites and the resulting network of transcription factor interactions.

The detections of transcription factor binding sites (TFBS) has been very successful
in yeast, where the intergenic regions are small enough to inspect them for presence of
sequence patterns (Tavazoie et al. [1]). In mammalia, in contrast, it is notoriously diffi-
cult to pinpoint the transcriptional start sites and the search for motifs cannot be focused
on a particular region. However, it has been shown that active TFBS are often conserved
across species as the corresponding sequence elements in the genome are usually under
selective pressure [2]. We took this as our motivation to compile the CORG database
of upstream regions conserved in human and mouse and subsequentially identified evo-
lutionary conserved binding sites in both genomes. The procedure has been previously
reported in [3].

Based on a gross abstraction of the complex process of protein-DNA binding, the
occurrence of TFBSs in upstream regions of genes can be represented as a bipartite
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graph or a Boolean binding site matrix of transcription factors versus genes. This ma-
trix contains a 1 whenever a particular binding site is found in an upstream region of a
gene and 0 otherwise. We deem this computational approach analogous to the technique
of chromatin immuno-precipitation. In [4] this technique was used to determine bind-
ing sites for E2F-1/4 in intergenic regions of human cell-cycle related genes. As such
detailed experimental binding information is not available for the majority of other tran-
scription factors, we utilize the binding predictions based on known sequences patterns
in evolutionary conserved promoter regions.

In the following we demonstrate how this information can be used to derive gene
modules which are regulated by the same transcription factor (TF) or the same combi-
nation of TFs. We evaluate the functional coherence of those modules using the annota-
tions of the Gene Ontology database. In the subsequent section we compare our results
directly with a large-scale experimental data set. In Section 3 we identify preferential
co-occurrence of binding sites as this is thought to reflect the modular architecture of
transcriptional control [5]. We evaluate the functional coherence of the corresponding
gene modules and are able to reason on their likely biological role. Finally, in Section 4,
we investigate the properties of the transcription factor network.

2 Validation – Comparison with Experiment

We determined putative binding sites in the conserved regions (as defined in [3]) by
screening for known motifs, which were taken from the TRANSFAC database [6]. In
the case of string representations we used motifs of length greater than 5 nucleotides
and accepted only exact matches. This resulted in a total of 529113 binding sites for
384 TFs and 12719 regulated genes in the human genome.

In order to compare our predictions with biological data we choose as reference
the experiment from Ren et al. [4], where the authors studied the binding of E2F-1
and E2F-4 to the promoter regions of approximately 1200 cell-cycle regulated genes.
In our genome-wide analysis we did not select promoters according to their expression
profiles, but rather their evolutionary conservation. Therefore we have a much larger set
of ≈ 13000 promoters, of which 886 could be mapped to the data set of Ren et al. In
Table 1 we present the overlap of our predictions with their findings.

To appreciate the resulting overlap it is important to reiterate that both in-vivo and
in-silico binding data are subject to sizeable false-positives error rates. While an exper-
imental binding site could also be the result of indirect binding to the promoter region,

Table 1. In this table we compare the number of E2F-4 and E2F-1+4 target genes with the bi-
ological binding data of [4]. The second column denotes the experimentally observed number
of bound promoter regions. The other columns give the number of conserved promoters which
contain a known E2F binding motif, the overlap with experiment, and the corresponding p-value
calculated from the hypergeometric distribution. The total overlap of our conserved promoter
regions with the experimental data set is 886.

TF Ren CORG Overlap P
E2F-4 79 240 43 6.1 × 10−8

E2F-1+ 4 38 240 26 6.3 × 10−8
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our prediction is equally error prone as many of the detected pattern may not be func-
tional biologically. Error rates from computational prediction algorithms can to some
extent be tuned and optimized to meet one’s desires. Usually, though, the false posi-
tive rates are overwhelming since nucleotide patterns alone are not powerful enough to
encompass the complexity of biological binding, and any such description is necessar-
ily not very specific. On the other hand, we accept that some biological binding sites
may not be identified, as our prescription (exact matches) could be too restrictive in
some cases. Experimental methods may equally miss active binding events, as they also
impose a somewhat arbitrary cut-off to separate noise from signal.

We therefore tested whether the observed intersect could be simply a random arte-
fact. This is not the case; more than half (43) of the E2F-4 binding promoters from Ren
et al are also found by our approach. This is a highly significant overlap (p ≈ 6×10−8)
and more than what has been reported in [7] (28 common binding sites). In anticipation
of the subsequent sections, we also tested the combined occurrence of the pair (E2F-1,
E2F-4) against a random choice of gene sets with the same size and find an equally
significant overlap of 68%.

To continue the functional analysis in analogy with Ref. [4], we studied the distri-
bution of GO-categories in a putative set of E2F-(1,4) regulated genes and compare
it to the background of all 12719 genes in the CORG database. We find a signifi-
cant enrichment (all p < 10−6) of genes which are annotated as transcriptional reg-
ulators (GO:0006355), development (GO:0007275), DNA-replication (GO:0006260),
DNA binding activity (GO:0003677) and damaged DNA binding activity (GO:
0003684). This agrees with known functions of E2F and we take it as an indication
that, with exact matches in conserved regions, we are indeed capable of determining a
large fraction of biologically relevant TFBS. In the following sections we extend this
study to a genome-wide identification of TF modules and the functional enrichment of
their target genes.

3 Identification and Annotation of TF Modules

Here we identify TF modules which are over-represented in our data set and to which
we can assign a functional role.

3.1 Single Transcription Factors

As a first step we extend the analysis of the previous section to those 168 transcription
factors and their regulated gene sets for which there is an exact motif match in both
the human and mouse conserved regions, i.e. we discard all exact matches which oc-
cur in only one of the two organisms. The gene sets were systematically screened for
functional enrichment. First, we determined for each set the GO-category with the best
overlap (as defined by the smallest value, h0, of the hypergeometric distribution). Then
we calculated a proper p-value, by choosing 1000 random gene sets of the same size
and counting how often one observes a value h ≤ h0. In doing so, our background
model respects the hierarchical dependencies within the gene ontology. We stress that
the random selection process is biased proportionally to the size of the conserved re-
gions for each gene. A similar test can be done to assess whether the overall distribution
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of GO-categories deviates significantly from the background. The same methods were
later applied to gene sets which are regulated by combinations of transcription factors
as described in the following sections. In Table 2 we present our list of single TFs which
show a significant overlap with a functional category as defined by a false positive rate,
p < 0.001. At this rate we would expect less than one association by mere chance for
the 168 gene sets in question.

Table 2. The above list of TF has conserved motif matches in promoters, whose gene sets show
significant association with a functional category. In the last column we give the fraction of genes
in the set which share the specified function. Only sets with p < 0.001 are shown and a few
cases have been removed, where the target gene set only contains one or two genes (very specific
motif).

TF GO-category of target genes overlap
E2F regulation of transcription 105/543
CP1 regulation of transcription 47/192
NF-κB chemokine activity 5/30
HrpF proton transport 6/34
SRF muscle development 6/34

3.2 Transcription Factor Modules from Biclusters

Eukaryotic cells often utilize a modular promoter architecture to control gene expres-
sion under a wide variety of developmental and environmental conditions. The algorith-
mic challenge is to identify groups of transcription factors, which preferentially bind to
certain groups of promoters in a noisy and heterogenous set of binding data. To this
end many different clustering algorithms have been developed [8–11]. Here we inter-
prete the binding data as a directed bipartite graph with two classes of nodes (TFs →
promoters) and implement an algorithm, which was originally suggested in [12] for
biclustering of microarray data (conditions → genes). This is a greedy algorithm that
finds a number of small complete subgraphs (bicliques) and extends them until their
weight cannot be improved. For the latter we use the log-odd score of a cluster model
versus a randomized graph model with same connectivity. While the weight of a given
subgraph can be used to rank bicliques and biclusters for their topological relevance,
we postprocessed the high-ranking clusters further, and screened their gene sets against
different GO-categories.

Specifically, we identified 1553 distinct heavy modules sharing between 2 and 4
TFs. In Table 3 we list some of the TF-combinations which show a significant functional
coherence of the regulated gene set. As before, the false positive rate was calculated by
sampling of random gene sets with the same size.

We observe a number of suggestive modules with clear biological function. Many of
the TFs with known motifs have been studied because of their role in development and
their capacity to regulate other transcription factors. Therefore it comes as no surprise
that many of the significant associations are also coherent in those functional categories,
only a few of which are shown in Table 3. What is more interesting to observe is how
combinations of transcription factors can convey a higher functional coherence. Con-
sider, for example, the set of 34 promoters bound by both CP1 and NF-YA. Individually,
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Table 3. This list shows the functional enrichment of selected TF-modules. We stress that it is
not simply based on the (large) fractional overlap of the target genes with a given GO-category,
but rather on the significant p-value which is smaller than 0.001 in all cases. We have removed
some redundancies in cases where a module has significant overlap with several related functional
categories.

TF-module GO-category of target genes overlap
ATF c-Ets-1 Elk-1 transcription factor activity 7/10
ATF Elk-1 NP-TCII transcription factor activity 11/18
E2F Elk-1 TFIID transcription factor activity 9/10
ATF δCREB NF-YA organogenesis 7/12
ATF AML1a development 17/37
c-Ets-1 Elk-1 NP-TCII development 10/17
E2F FOXL1 development 18/35
ATF UBP-1 NP-TCII retinoic acid receptor activity 3/6
CP1 NF-YA MHC class II receptor activity 6/34
GABP HrpF proton transport 6/18

their binding pattern can be found in 258 and 453 conserved promoters, which are by
themselves not very specific. However, in combination we find a significant enrichment
in genes with “MHC class II receptor activity” and almost half of all target genes are
involved in receptor activity, protein targeting and signal transduction. This enhanced
specificity is characteristic for all modules shown in Table 3.

In order to derive the biclusters we discarded a number of most abundant transcrip-
tion factors with unspecific binding patterns (such as PEA3, GATA-2, Sp1 and others).
Clearly, some of them are utilized by the cell in many different processes, but their
function and specificity is likely to be determined by other (non-sequence) signals.

4 Transcription Factor Circuitry

The ultimate goal of transcriptional control analysis is the identification of regulatory
networks in which environmental stimuli propagate through a signal transduction cas-
cade to their respective promoters. The corresponding genes may themselves be tran-
scriptional regulators and often drive complex processes (such as the cell-cycle). Since
there is a shortage of large-scale protein interaction data for humans, we can only take
a first glimpse at such a network. In particular we studied direct genetic interactions of
transcription factors as they are frequently recorded in the CORG database (a promi-
nent example being the one of E2F-1, which binds to its own promoter). An important
first question about such networks concerns the hierarchies of regulation and the search
for “master” regulators. To address this issue in a quantitative manner we introduce two
measures of regulatory power (Pt) and regulatory control (Ct) for each transcription
factor t:

Pt =
number of TFs regulated by t

total number of genes regulated by t
(1)

Ct =
number of TFs regulating t

number of conserved basepairs
(2)
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Basically, these are conveniently normalized out- and in-degrees in the bipartite
graph and they take into account the heterogeneities in the specificity of the TFs and the
conserved promoters (i.e. their lengths). These quantities have been further rescaled by
their averages, P̄ and C̄ . In Figure 1 we present a view of the TF-network as defined by
CORG. Each factor in this coordinate system is placed according to its values Ct and
Pt. Not shown are those factors for which the encoding genes show no conservation in
their upstream regions and for which we have no regulatory information.
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Fig. 1. Network of transcription factors. The nodes are arranged such that transcription factors
which regulate many other TFs appear further at the top, and TFs which are regulated by many
other TFs appear further to the right. The precise definition of these quantities is given in the main
text.

Transcription factors with enhanced binding to other TF-promoters include SMAD-
4 and FOXL1. On the other hand, we also observe transcription factors with an apparent
depletion of TF-targets, such as p53 and NRF-1. One may speculate that evolution could
have discouraged the binding of some transcription factors to the promoter regions of
other regulators. Other transcription factors, such as c-Rel and RelA, seem to be tightly
regulated as we observe a rather high density of binding sites in their conserved pro-
moter regions.

5 Conclusions

With the CORG database we have created a comprehensive and high-quality database
of predicted transcription factor binding sites which opens up the way for further ex-
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ploratory analysis. In this work we studied the co-occurrences and the modular archi-
tecture of regulatory networks based on binding motifs in conserved intergenic regions.
In a careful validation study we find 54% of all E2F-4-targets, which were reported
experimentally by Ren et al. [4]. For the TF-pair E2F-(1,4) the overlap is even higher
(≈ 68%). The false positive rate is probably very high, but one cannot properly estimate
it as negative experimental evidence is usually not available. Here we assume that bio-
logically meaningful (modular) binding events will stick out of the random background
as having a higher degree of co-occurrence than what one would expect for random hits.

In our biclustering approach we focused merely on the presence or absence of a fac-
tor in a given promoter region. In several cases one can observe clear hints of functional
enrichment and we consider those to be reliable targets for future research as they are
endorsed by human-mouse orthology, co-occurring TFBS, and an unusual overlap with
GO-categories. In particular the utilization of biclusters helped in establishing func-
tional associations and one would like to reason that this resembles the way in which
the cell endows specificity to modules, rather than individual factors.

The validation of modules using functional annotations should be considered a first
step only and awaits further analysis. There is much room to supplement this simple
measures of coherence with other information, such as co-expression and tissue speci-
ficity. Reliability may also be increased by reducing the pattern space to clusters of
similar binding site motifs.

Finally, we studied the network of transcription factors and defined two measures to
distinguish powerful factors, which regulate many other transcription factors, and those
which are themselves heavily regulated. We identified a number of key regulators such
as SMAD-4 and FOXL1. Factors under comparatively tight control are c-Rel, RelA and
MAZ. A more complete identification of the human regulatory network will depend
in large parts on the availability of protein interaction data, which could be naturally
included into our framework.
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Abstract. The experimental characterization of novel genes is a tedious and ex-
pensive process. While computational gene characterization cannot replace wet
lab studies, it has the potential of providing valuable guidance for experimen-
tal biologists. We use the novel IL28A,B and IL29 cytokine family to illustrate
an approach to the computational identification and characterization of putative
transcriptional regulatory regions that utilizes a combination of known and novel
techniques. We then apply the approach, which we dubbed Orthocluster, to screen
putative regulatory regions of a set of annotated RefSeq mRNA sequences. The
encouraging results obtained for known genes motivate the analysis of novel or
uncharacterized genes, which is one focus of our current work.

1 IL-28, IL-29 and Their Class II Cytokine Receptor IL-28R

Cytokines play a critical role in modulating the innate and adaptive immune systems. A
family of three cytokines, designated interleukin 28A (IL-28A), IL-28B and IL-29, that
are distantly related to Type I interferons (IFNs) and the IL-10 family, was identified
from human genomic sequence. Like Type I IFNs, IL-28 and IL-29 are induced by viral
infection and show antiviral activity [1]. However, unlike all Type I IFNs, IL28 and
IL29 signal through a receptor distinct from the Type I interferon receptor.

1.1 Gene Structure

Figure 1 illustrates a comparison of the genomic sequences containing the human (ab-
scissa) and murine (ordinate) IL-28A genes, showing the conservation of the gene struc-
ture for both, the coding and non-coding portions of the gene. The conservation of the
non-coding regions labeled 1–4 suggests that they might have regulatory function.

1.2 Identification of Putative Regulatory Elements

A search for binding sites of a set of 40 transcription factors (TFs) gave putative sites
of TFs playing roles in the transcriptional regulation of interferons and interferon-
stimulated genes (AP-1, CREB, GATA, ISRE, NF-AT, and NF-κB).

In Fig. 2, the pairwise sequence alignments of the conserved regions labeled 1 and
2 in Fig. 1 are displayed along with the positions of conserved putative TF binding sites
detected at a relative weight matrix threshold of 60%. The set of putative binding sites
identified so far is consistent with the human/mouse alignment. This is an example of

E. Eskin, C. Workman (Eds.): RECOMB 2004 Ws on Regulatory Genomics, LNBI 3318, pp. 22–29, 2005.
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Fig. 1. Gene Structure of Human and Murine IL28A. The six segments shown in black and labeled
with roman numerals depict exons. The insets show the alignments of the cDNA sequences with
genomic sequence. The four segments shown in gray and labeled 1–4 are non-coding regions with
significant similarity between mouse and human genomic sequences and were further studied for
potential regulatory function.

                 −−−−AP−1−−−−                                 −−−−−Sp1−−−−−− +NF−kappaB+    
                        −−−−NF−AT−−−−                                         +NF−kappaB+ 
                        ++++++ISRE++++++                                      −NF−kappaB−     +NF−kappaB+
                                                                       −−−−AP−2−−−−−  −−−Ptx1−−−

HUMAN   TTACCCCTGAGTCTCCATCAGTTTCTCTTTCCCTCCAGCTGCTCATCTGGCTCACTAGCCCTGCCCTGCTCTGGGCTTTCCCAGCCTGGGGCTCCCCTGGTGGC
        : :::  :: : :::  ::: ::::::::::::: :::   :::: :::   : :: :::  :::::::::::::::: ::::::::::: ::::: : :::::
MOUSE   TGACC−−TG−GACTCTGTCATTTTCTCTTTCCCTGCAGTGTCTCACCTG−−−CTCTCGCCACGCCCTGCTCTGGGCTTCCCCAGCCTGGG−CTCCC−TAGTGGC

               −360      −350      −340      −330      −320      −310      −300      −290      −280      −270

                −330      −320      −310      −300         −290      −280      −270      −260       −250

                      +++HNF−3beta++++ −−−Pit−1−−−−
                          −−−−NF−AT−−−−  −−CREB−−−
                           ++++++ISRE++++++++SREBP−1+++
                                  −−−−NF−AT−−−−     −NF−kappaB−
                                         −−GATA−3−− +NF−kappaB+
                                         +++++Myf+++++

HUMAN   CCGGTGTCTTACCTGAGGCTGTGTTTTCACTTTTCCTACATCAGCTGGGACTGCCCTTCTGTCAGGGATAAAAGCTGCCCCAT
        : ::: ::  :::::   :  : :::::::::::::::::::::::::: :::::: :: : :  :: :::::::      ::
MOUSE   CAGGTATCA−ACCTGCTACCTTATTTTCACTTTTCCTACATCAGCTGGGGCTGCCCATCAGACCAGGTTAAAAGC−−−−−−AT

            −260      −250      −240      −230      −220      −210      −200      −190

        −240       −230      −220      −210      −200      −190      −180      −170

1

2

Fig. 2. Putative TF binding sites in the IL28A promoter. The positions are given with respect to
the initial ATG.

the use of phylogenetic footprinting, a technique that has proven a valuable resource
for the identification of functional regulatory elements [2]. However, the results do not
identify the significance of TF binding sites in the sense that their combined occurrence
is surprising. In order to determine the significance of the binding sites, we apply a
statistical model for the clustering of sites within the conserved regions.
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2 Prediction of Orthologous Binding Site Clusters: Orthocluster

2.1 Statistical Model

We use a simple statistical model that is based on the assumption that the occurrence
of sites for the individual TFs can be modeled by a Poisson distribution [3]. For a ge-
nomic region of interest, the significance of the occurrence of sites is determined by
comparison with the site frequencies in a background sequence data set. For the in-
dividual transcription factors TFi included in our model, we compute the background
rates (site frequencies) λi by determining putative binding sites in 10, 000 basepair up-
stream regions of 7, 395 human genes. The sites are required to be conserved between
human and mouse, therefore the background rates are generally lower than if one sim-
ply considered the human upstream regions. In this way, the model explicitly includes
cross-species comparisons in the computation of statistical significance. To our knowl-
edge, most currently available methods use orthologous sequence alignments only as a
post-processing filter that improves the specificity of the algorithm [4, 5] . (Two excep-
tions are the program Stubb [6] and the ModuleSearcher/ModuleScanner tools available
via the TOUCAN workbench [7].)

In our approach, multiple sites for n TFs can be described by a superposition of
Poisson distributions [3], with the rate λ for the superposed process given by

λ =
n∑
i

λi . (1)

Then for a cluster containing k sites, the probability density pk(l) is given by

pk(l) =
(λl)k−1λ e−λl

(k − 1)!
. (2)

At a given significance level P , a given cluster containing k sites is significantly shorter
than expected by chance alone, if for a window of size L,

P (NL ≥ k) =
∫ L

0

pk(l) dl = 1 −
k−1∑
j=0

e−λL(λL)j

j!
< P . (3)

Figure 3 illustrates an example with n = 2 and k = 5.

HUMAN

MOUSE

i

1
2

L
j 1 2 3 4 5

Fig. 3. Example with n = 2 and k = 5.
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Many significance tests are performed when we search a large number of upstream
regions for many different combinations of TF binding sites. We do not address this
issue here, which would require a correction of the P -values in order to avoid Type
I error [3]. Hence our P -values have to be regarded as relative rather than absolute
measures.

3 Application of Orthocluster to IL-28A

For n = 5, and using a superset of 40 TFs, the most significant cluster identified in the
IL28A promoter consists of ISRE (-353), NF-κB (-299), NF-κB (-284), ISRE (-247),
and NF-κB (-222), where the positions are given relative to the initial ATG. (For n < 5,
subsets of this cluster were detected.) Comet [8] and Cluster-Buster [9] were used for
comparison and gave consistent results.

4 Application to Large Data Sets

In the previous example, we started with a superset of 40 TFs and we could identify
a significant cluster of binding sites for a small set of TFs known to be associated
with immune related function (ISRE and NF-κB). In general, however, this approach
can be expected to be problematic for assigning genes to functional categories, due to
redundancies in the DNA recognition sequences of TFs and the combinatorial nature of
the problem.

Selection of subgroups of TFs based on the biological contexts to be studied is
likely to decrease the amount of noise in the results. One approach towards this goal
is the definition of subsets of TFs associated with expression patterns of interest: In
the following we use two disjoint subsets that have been identified in association with
hepatocyte-specific gene regulation (C/EBP-α, HNF-1, HNF-3, and HNF-4 [10]) and
immune-related function (AP-1, ISRE, NF-κB, and STAT [11]). We assign a gene to
one of multiple categories (in our case either liver or immune) depending on which TF
model yields the best P -value.

The extraction of human upstream regions from genomic sequence and the identi-
fication and extraction of their mouse orthologs have been implemented as automated
processes.

First tests were performed using the liver sequence set from [4] and an immune-
related set. The algorithm was able to correctly classify the majority of genes known to
fall into those categories. Details are given in Appendix B.

Subsequently, the approach was applied to a set of 1815 annotated RefSeq mRNA
entries. The results are shown in Table 1.

The 15 most significant results that were classified as liver-specific (immune-related)
contain 9 (11) true positived in the sense that they are annotated as liver-specific
(immune-related) genes, giving a sensitivity ≥ 60%. A more detailed analysis of the
results regarding annotated TF binding sites is given in Appendix C.

Tests showed that the sensitivity is largely robust with regard to a variation of the
weight matrix score threshold in the range of 65–75%.

The specificity depends on the setting for the P -value threshold. Based on a re-
view of our test data by biologists (data not shown), we used P ∼ 10−7 as a P -value
threshold for our screens of unannotated genes.
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Table 1. For each model, the best 15 hits from a set containing 1815 RefSeq entries are shown.
True positives [i.e. liver-specific genes in (a) and immune-related genes in (b)] are denoted by +.

(a) Liver Results

Acc. # P HUGO symbol description +
NM 000384 1.3 × 10−11 APOB apolipoprotein B (including Ag(x) antigen) +
NM 000096 1.6 × 10−11 CP ceruloplasmin (ferroxidase) +
NM 000562 2.1 × 10−11 C8A complement component 8, alpha polypeptide
NM 005807 4.7 × 10−11 PRG4 proteoglycan 4 +
NM 013371 5.3 × 10−11 IL19 interleukin 19
NM 005010 5.8 × 10−11 NRCAM neuronal cell adhesion molecule
NM 000488 1.9 × 10−10 SERPINC1 serine (or cysteine) proteinase inhibitor +
NM 000583 4.2 × 10−10 GC group-specific component +
NM 004950 6.4 × 10−10 DSPG3 dermatan sulfate proteoglycan 3 +
NM 018914 7.6 × 10−10 PCDHGA11 protocadherin gamma subfamily A, 11
NM 000477 1.1 × 10−9 ALB albumin +
NM 001962 1.1 × 10−9 EFNA5 ephrin-A5
NM 001756 1.3 × 10−9 SERPINA6 serine (or cysteine) proteinase inhibitor +
NM 004967 2.0 × 10−9 IBSP integrin-binding sialoprotein
NM 001134 2.1 × 10−9 AFP alpha-fetoprotein +

(b) Immune Results

Acc. # P HUGO symbol description +
NM 002176 4.5 × 10−12 IFNB1 interferon, beta 1, fibroblast +
AF122906 2.4 × 10−11 IL18BP interleukin 18 binding protein +
NM 001503 6.2 × 10−11 GPLD1 glycosylphosphatidylinos. spec. phosphol. D1 +
NM 002416 3.2 × 10−10 CXCL9 chemokine (C-X-C motif) ligand 9 +
NM 013243 3.5 × 10−10 SCG3 secretogranin III +
NM 000395 5.0 × 10−10 CSF2RB colony stimulating factor 2 receptor, beta,
NM 001561 6.7 × 10−10 TNFRSF9 tumor necrosis factor receptor superf., m. 9 +
NM 003326 1.4 × 10−9 TNFSF4 tumor necrosis factor (ligand) superf., m. 4 +
NM 000589 1.5 × 10−9 IL4 interleukin 4, transcript variant 1 +
NM 000371 1.5 × 10−9 TTR transthyretin (prealbumin, amyloidosis type I)
NM 020525 1.8 × 10−9 IL22 interleukin 22 +
NM 004407 2.3 × 10−9 DMP1 dentin matrix acidic phosphoprotein
NM 000074 2.7 × 10−9 TNFSF5 tumor necrosis factor (ligand) superf., m. 5 +
NM 016584 3.4 × 10−9 IL23A interleukin 23, alpha subunit p19 +
NM 004355 3.5 × 10−9 CD74 CD74 antigen

5 Conclusions and Outlook

We demonstrated that the described approach can be used on a genomic scale to provide
clues about the function of novel or uncharacterized genes.

There are a number of possible notable variations and extensions of the current
model.

Instead of anchoring the extraction of the upstream regions at the locations of an-
notated transcription start sites, a looser definition of an upstream region, for example
based on FirstEF predictions [12], may be considered.
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We applied the method only to two clusters, associated with hepatocyte-specific
gene regulation and immune-related function, respectively. One can, in principle, try to
construct models for a variety of other biological contexts by modifying the set of TFs
included in the search (e.g. TFs associated with transcriptional regulation of skeletal
muscle, including Mef-2, Myf, SRF, TEF, Sp1, and AP-1 [13]). Or one can attempt to
design a modified model, as for example a specialized immune model for genes stim-
ulated by type I interferons by focusing the search on ISRE binding sites. The identifi-
cation of TFs associated with the biology of interest, however, constitutes a non-trivial
step. Contributions from ongoing text mining efforts in the Computer Science commu-
nity [14] have been helpful and can be expected to further aid the characterization of
genes in the future.
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Appendix

A Methods

The pairwise sequence alignments used for Fig. 1 were performed with DBA [15] as
well as with an in-house tool based on WU-BLAST, version 2.0, and a local imple-
mentation of GLASS [16]. With the default parameter settings, the different tools gave
consistent results. GLASS was used for the alignments performed within Orthocluster.

The search for individual TF binding sites was performed with standard position
weight matrices [17] drawn from the TRANSFAC database (version 3.0 [18]) as well
as several matrices that were assembled in-house. The set of 40 TFs used was selected
with the goal to eliminate some of the redundancies in the original TRANSFAC matrix
collection and consists of AP-1, AP-2, ARE, BSAP, CCAAT, CEBP, CREB, CdxA,
ER, Egr-1, Elk-1, Freac-3, GATA-3, GR, HNF-1, HNF-3β, HNF-4, HSF1, ISRE, Max,
NF-1, NF-AT, NF-κB, Oct-1, PPAR-γ, Pax-6, Pit-1, Ptx1, RORα1, SF-1, SREBP-1,
SRF, STATx, Sp1, Staf, TATA, Tbet, YY1, p53, and v-Maf.

B Tests Using Documented Liver-Specific
and Immune-Related Genes

Tests were performed with human upstream regions with mouse orthologs for the seven
liver specific genes with RefSeq accession numbers NM 000780, NM 000340,
NM 000151, NM 000312, NM 000463, NM 000035, and NM 000207. Using a weight
matrix threshold of 65%, four sequences were correctly classified (NM 000780,
NM 000340, NM 000151, and NM 000035). At a threshold of 70%, this was the case
only for NM 000780, NM 000151, and NM 000035.

Tests were performed with human upstream regions with mouse orthologs for for
the six immune-related genes NM 024013, NM 000605, NM 002176, NM 002177,
NM 000619, and NM 172138. For both weight matrix thresholds used (65% and 70%),
all sequences but NM 002177 were correctly classified.



Fishing for Proteins in the Pacific Northwest 29

C Analysis of the Immune-Related Predictions
on the Binding Site Level

The detection of individual sites that themselves are true positives ensures that one does
not only detect a significant overall signal, but also that the signal is produced for the
right reasons [19].

A detailed analysis of the results summarized in Table 2 shows that typically the
overall signal is only partly resulting from the detection of annotated binding sites.

Table 2. The best 10 hits for the immune model from a set containing 1815 RefSeq en-
tries are shown. True positives are denoted by +. Documentation of verified binding sites
is given in the last column (PubMed identifiers). See http://srs6.bionet.nsc.ru/
srs6bin/cgi-bin/wgetz?-e+[TRRDGENES4-AC:A00274] for IFNB1. (*) The de-
tected region in the IL18BP promoter does not match experimentally verified binding sites. (**)
Secretogranin III is regulated by CREB, a pattern similar to AP-1, which is included in the model.
(***) Transthyretin is regulated by AP-1.

Acc. # P HUGO symbol + binding sites (PMID)
NM 002176 4.5 × 10−12 IFNB1 + URL
AF122906 2.4 × 10−11 IL18BP (*) 12482935
NM 001503 6.2 × 10−11 GPLD1 +
NM 002416 3.2 × 10−10 CXCL9 + 12403783
NM 013243 3.5 × 10−10 SCG3 + (**)
NM 000395 5.0 × 10−10 CSF2RB
NM 001561 6.7 × 10−10 TNFRSF9 + 12706838
NM 003326 1.4 × 10−9 TNFSF4 +
NM 000589 1.5 × 10−9 IL4 + 12479817
NM 000371 1.5 × 10−9 TTR (***) 1870969
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Abstract. We present a new Gibbs sampler algorithm with the motivation of
finding motifs, representing candidate binding sites for transcription factors, in
closely related species. Since much conservation here arises not from the exis-
tence of functional sites but simply from the lack of sufficient evolutionary di-
vergence between the species, a conventional Gibbs sampler will fail. We com-
pare the effectiveness against conventional methods on closely-related yeast se-
quences. Our algorithm is also applicable to single-species or phylogenetically-
unrelated sequences, and has further improvements over previous Gibbs sam-
plers, including accounting for correlations in the “background” model, an option
to search for “dimers” (pairs of motifs with variable spacing), and a “tracking”
strategy that allows us to assess the significance of candidate motifs.

1 Introduction

Gene transcription is regulated by transcription factors, proteins that bind upstream
of a gene and typically recognise a short conserved pattern, or “motif”, in the DNA.
The development of motif-finding algorithms to scan regulatory regions and look for
overrepresented motifs is thus of great interest.

For a motif finder to be effective, there must be several copies of a motif to find: it
is impossible to detect just one copy of a motif without other prior knowledge, and hard
to conclude that two fuzzy copies indicate overrepresentation. To increase the num-
ber of copies, one option is to examine genes that are known to be regulated by the
same factor. This is not always possible, though often hints can be drawn from microar-
ray experiments. But another option is offered by the increasing number of genomes
of closely related species that have appeared in the recent past: we can increase the
amount of sequence available by looking at regulatory regions of homologous genes
in different closely-related species. For example, sequences of four near relatives of
the yeast S. cerevisiae (namely, S. kudriavzevii [1], S. bayanus, S. mikatae [1, 2], and
S. paradoxus [2]) have been published, as well as two more distantly related species,
S. castellii and S. kluyveri [1]. Similarly, in addition to the fruit fly D. melanogaster,
its close relative D. pseudoobscura has been sequenced, and fragments of sequence
for various other near Drosophila species exist. In the mammalian world, comparative
genomics using the human, chimpanzee,mouse and rat genomes appears promising.

E. Eskin, C. Workman (Eds.): RECOMB 2004 Ws on Regulatory Genomics, LNBI 3318, pp. 30–41, 2005.
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Attempts have been made, for example in the yeast papers by Cliften et al. [1] and
Kellis et al. [2] to find motifs using this extra phylogenetic information, but these have
been in the nature of phylogenetic “screens” that concentrate on conserved blocks. Here
we evolve a method that accounts for both conserved and non-conserved regions in a
transparent and consistent way: this is important because known functional binding sites
are not always conserved in other species [3, 4]. Our starting point is the Gibbs sampler.
This is a Markov-chain Monte Carlo method [5] to sample a phase space by making a
choice at each step from numerous possible moves, weighted by their probabilities; it is
more computationally intensive than the usual Metropolis algorithm (where a random
move is tried and accepted or rejected), but in problems such as this, converges much
faster. In the biological motif-finding context it was introduced by Lawrence et al. [6, 7].

In addition to phylogeny, we make other enhancements to the idea of the Gibbs
sampler, the most important of which is a “tracking” mechanism to determine the sig-
nificance of motifs. This is described in detail later.

2 Scoring with Phylogenetic Conservation

Motifs are often represented by “weight matrices” [8] wαn, the probability of finding
base α (= A, C, G, T) at site n of the motif (summing over α to 1 for each n.) It is
assumed that different columns of the weight matrix are independent.

Most intergenic DNA is probably not functional; non-functional sites are assumed
to be described by a “background model” instead. Rather than use raw base counts, we
use a background model that incorporates correlations, described below.

With closely related species, much sequence is conserved not because of function-
ality (presence of binding sites) but because the species are too recently diverged to
have mutated significantly. Typical motif finders described above can get misled by
such meaningless conservation; we want to account for phylogenetic conservation and
adjust the scoring of motifs for this.

When one tries to align these intergenic regions, using alignment tools such as
Clustalw [9] or Dialign [10], one finds that there are large blocks of sequence that
are highly conserved, interspersed with significant blocks of unconserved, inserted or
deleted sequence between different species. We want to treat the non-conserved blocks
just as we would an independent sequence, while accounting for phylogeny in the con-
served blocks.

We use the following strategy: First, we identify phylogenetically conserved blocks
in the sequence, using the alignment tool Dialign [10], with rather stringent parameters
for identifying conserved blocks, so that aligned regions are typically rather highly
conserved.

Then, we parse the sequence into “windows” – possible sites for motifs, all necessar-
ily all of the same length not counting gaps. In the absence of phylogenetic alignment,
“windows” are simply stretches of sequence of length L (the length of the motif), as
in figure 1. With phylogenetically aligned regions, windows extend across all aligned
sequences – that is, if a base in one sequence has an aligned base in another sequence,
that other sequence must be part of the window, as illustrated in figure 2. Windows must
be “consistent”: there are no “gaps” and pairs of aligned bases are always a consistent
distance apart. Thus, we are assuming that a putative binding site in an aligned block is
a candidate site either in all the aligned sequences, or in none of them.
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actggaatagcatgatgcgtgcaaatgatc
aatactatagatatcaccaaatactatcat

atacaacaatactgatgaccataacacaaa

Fig. 1. Independent sequences (without dialign constraints) and an example of a configuration
where four windows have been placed

ACGAGCAtagacaGTAGCA−AGCAC
ATGAGCAcagtacGTCGCATACCTC
CCGATCggt−−−−−atagATACGAC

Fig. 2. Aligned sequences in the fasta format output by dialign; only vertically aligned upper-
case letters are assumed to have originated from a common ancestor. The dashes are inserted to
align the uppercase letters; lowercase letters are not aligned and may be moved through adjacent
dashes, for example the “atag” in the last line can be moved before the preceding dashes adjacent
to the “ggt”, if one wants to place a window at those sites; but the subsequent uppercase letters
cannot be moved. Two legitimate windows (solid borders) are shown, one encompassing all three
sequences, the other encompassing two of the three. In addition, an illegitimate window is shown
(dashed border) – illegitimate because it contains a deletion in a conserved block, which violates
our assumption that a motif in a conserved block must be found in all species

The multiple alignment defines in this way the space of possible windows repre-
senting binding sites. These sites are sampled uniformly: a window spanning multiple
sequences in an aligned block is sampled as often as a single-sequence window. A
“configuration” is a particular choice of selected windows representing binding sites.

The “score” of a configuration is the probability that all the windows in that con-
figuration were drawn from the same weight matrix, divided by the probability that
all of them were drawn from a background model. (Alternatively, one could use the
probability that these windows were sampled from the weight matrix, multiplied by the
probability that all sites not in these windows were sampled from the background –
this gives the probability of drawing the entire sequence given the current configuration
of windows. It is convenient, however, to normalise this by dividing by the probability
that the entire sequence was sampled from the background with no weight matrices; this
gives our score.) The Gibbs sampler samples for this score; high-scoring configurations
represent likely locations for binding sites.

First we describe the score for single-sequence (phylogenetically independent) win-
dows: For a given w, the probability that the windows in a configuration C were all
sampled from w is

P (C|w) =
N∏

i=1

L∏
n=1

wαi,nn (1)
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where the i’th motif has base αi,n at position n. Since we don’t know the weight matrix,
we integrate over the space of all possible weight matrices (that is, over each component
wαn with 0 ≤ wαn ≤ 1 and

∑
α=A,C,G,T wαn = 1). This integral can be done exactly:∫
w

∏
α

wnα
α =

3!
∏

α nα!
(N + 3)!

where N =
∑

nα is the total number of windows and nα is the ‘base count’ of base α,
that is, the number of windows where base α appears at that position. Alternatively one
can include a “prior probability” for weight matrices: P (C) =

∫
w

P (C|w)P (w)dw.
With a suitable choice of P (w) [11] this approach is equivalent to that of Liu et al. [7].

The probability that these windows were sampled from a background model is given
by eq. (1) with background probabilities b replacing the weight matrix elements w. No
integral is required since background probabilities are known.

For multi-sequence aligned windows, we modify the scoring for the window, as-
suming (irrespective of whether bases in it are uppercase or lowercase) that the bases
in it, whether sampled from a weight matrix or from a background model, did not arise
independently but evolved from a common ancestor.

We assume a “star” topology, with all species descending from a common ances-
tor; more general treatments along the same lines are possible, but complicated. Thus,
looking at one column, each base in that column is a descendant of an ancestral base
a. Assuming mutation rates mi and assuming divergence a time t ago, the probability
that a base in the i’th descendant is unmutated is e−mit = μi. The probability that it
is mutated is 1− μi. After mutation, once selection has operated and fixation occurred,
the base is again represented by a sample from the same weight matrix (since the pro-
tein is generally unchanged in such close relatives). These considerations give us the
following expression for the probability P (W |w) that these bases in one column of the
window W , descended from a common ancestor, were sampled from the same weight
matrix, in terms of a “transition probability” T (αi|a) that the base αi evolved from an
ancestor a [12]:

T (αi|a, μi) = [δaαiμi + (1 − μi)wαi ] (2)

P (W |w) =
∑

a=A,C,G,T

wa

N∏
i=1

T (αi|a, μi) (3)

(position index n omitted for simplicity). The full probability is a product of such fac-
tors over all columns. The expression is generally plausible and has the correct limits
for μ → 0 (infinitely diverged species, i.e. independent sequences) and for μ → 1
(zero divergence, i.e. identical species). Note also that the transition matrix T (αi|a)
has the correct multiplicative property if one inserts an intermediate unknown ancestor:∑

b T (αi|b, μ1)T (b|a, μ2) = T (αi|a, μ1μ2). For further discussion, see reference [12].
For a set of windows, the probability that all these windows were sampled by the

same matrix is given by a product of factors, one for each window, monomial as in
eq. (1) for single-sequence windows and polynomial as in eq. (3) for multi-sequence
windows. The total expression is thus likely to be a complicated polynomial, and is
then integrated over all weight matrices w. (In practice, we use approximations for this
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integral, which we have verified are accurate.) Again, for the background scores, one
substitutes w with background probabilities b and does not integrate.

A word about background probabilities: one commonly uses the raw “base counts”
for each base. These are 1/4 each in the simplest assumption, but A and T are more
frequent in practice than C and G. We found it beneficial to instead use conditional
probabilities for the occurrence of each base with the n preceding bases (in other words,
assume a Markov model for the sequence.) That is, to calculate the background proba-
bility of the C in the sequence AGC, with two-neighbour correlation, we use

P (C|AG) =
N(AGC)

N(AGA) + N(AGC) + N(AGG) + N(AGT)
(4)

where N(AGC) is the actual number of occurrences of the string AGC in the sequence,
etc. To calculate these numbers, it is preferable to use a larger dataset than the sequence
of interest: for example, all sequenced intergenic regions in the organism, if available.
If not enough sequence exists, a pseudocount of raw base counts may be added.

3 Implementation of the Sampler

With the above framework for scoring configurations of windows, we can implement
the Gibbs sampler in a straightforward manner. We typically sample for multiple motifs
at a time, which in effect means assigning different “colours” to the selected windows;
each colour is scored separately and the total score is a product over all colours.

We start from a random configuration. At any instant in time the configuration is a
set of selected windows, in different colours. The moveset takes us from one configu-
ration to another, possibly changing the number of windows, the number of colours, or
both, and is designed to satisfy “detailed balance” so that, in the long time limit, each
configuration would be visited a fraction of the time proportional to its score.

The movesets we developed can follow several different strategies, with two key
kinds of moves involved, which we call the “window move” and the “colour move”:

1. We can restrict the total number of colours, and the total number of windows,
rigidly. At each step we will “move” a window and optionally recolour it to one
of the other existing colours: that is, we will pick a window at random, remove it,
and sample from all new places where it can be placed, and all possible colours
it can have at the new location. We call this the “window move”. To preserve the
number of colours while maintaining detailed balance, we require that the window
being moved was not the only one in its colour; if not, we do nothing but incre-
ment the counter. This conserves total colour number and total window number, but
not the number of windows per colour. It is also a highly optimal move in escap-
ing local minima by “freeing” windows that are blocked by differently-coloured,
suboptimally-placed windows.

2. We can change the number of windows, and the number of colours. To do this,
we alternate the “window moves” with another kind of move which we call the
“colour move”. Here, we pick a window; if it is “blocked” (an overlapping window
is coloured), we make no move, but increment the time counter (this is necessary
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to preserve detailed balance); otherwise, sample from all possible colours it can be
given, which may be the “null” or “background” colour (ie removing a window),
one of the existing colours, or a new colour (if the window was already the only
one in its colour, “new colour” means the same colour as earlier). This move con-
serves neither colour number nor window number, but preserves detailed balance.
By itself, it does not do a good job of detecting motifs (though it ought to do that
in the infinite-time limit, since it is ergodic and satisfies detailed balance); rather,
its role is to expand the “colour space” and “window number space” of the system,
while the “window moves” do the job of actually aligning motifs together.
This strategy of mixed moves will tend to populate the sequence with as many win-
dows and as many colours as necessary to maximise the score, simply for entropic
reasons (there are more states with a lot of windows than with a few windows).
Thus, each configuration will be a “parse” of the sequence into similar motifs. A
benefit is that one doesn’t need to guess how many copies of a motif one is look-
ing for: if good copies exist, they will be added to existing colours, otherwise new
colours will be created. The disadvantages are that this strategy may “split” fuzzy
motifs into several smaller groups, and the number of motifs it yields may be so
large as to be unwieldy.

3. We can use the “colour moves” to allow a flexible colour/window number, but
use a “chemical potential” to constrain the number of windows. Thus, every extra
added window has a cost. Alternatively, we can introduce an entropic “correction
factor” to take account of the fact that there are more states with n + 1 windows
than with n windows (until n becomes large); the factor is easy to calculate for
a single sequences, harder for multiple unrelated sequences and very hard for the
phylogenetically aligned case. We can also place a rigid upper limit on the total
number of colours.

To use the first strategy, we need initial values for N , C and the expected motif
length L. It is fine to somewhat overestimate C and L, and advisable to somewhat
underestimate N compared to the number of binding sites one actually expects to see.
Typically one has one or two strong motifs, and the redundant colours while sampling
then act as “buffers” to control the number of motifs actually picked by the sampler.

Regardless of strategy, in addition to the above moves, there are two other moves
that we use to improve performance. A “global shift” move samples all possible shifts
of an entire colour by a fixed amount; this is necessary because once the program finds
a good placement of windows that is shifted relative to its optimal position, it is im-
possible to correct this by single-window shifts: the program will stay stuck in a local
minimum. A “maskbit flip” move turns on sampling of mask bits for columns that indi-
cate whether that column is to be scored or not; this is inadvisable for short motifs but
is particularly useful for long motifs that have intervening fuzzy regions (such as occur
in bacterial sequences), where it would be preferable not to score the fuzzy columns.

4 An “Anneal and Track” Strategy for Assessing Significance

In sampling for a long time, all configurations will be visited in the infinite-time limit
with a frequency proportional to their score. To find the configuration with the best
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score, we can anneal (that is, raise the score to a power β representing a fictitious inverse
temperature, and slowly raise β). If there is one overwhelmingly good configuration, a
well-implemented anneal will typically find it easily; if there are several comparably
good configurations (for example, more binding sites than one is searching for, or dif-
ferent motifs corresponding to different transcription factors), the anneal will randomly
choose one of them.

Annealing in the framework of our moveset gives us a good candidate set of win-
dows (binding sites); and we may also have candidate windows by comparing multiple
anneals, or from other sources altogether; but it is desirable to assess their significance
in some way. The approach below does this, and as a side benefit, also assigns signifi-
cance to other sites which may not have been in our candidate set.

To do this, we set up a “labelled list” of the windows that we want to track. We
could even up several such “labelled lists”, with different labels A, B, C. . . , and track
them simultaneously. Then we sample for a long time without annealing (β = 1), doing
the following:

1. At each time step, there is a set of colours each with a set of selected windows. For
each labelled list A, we associate one of the current colours with that labelled list.
Unless we are exceptionally lucky, none of the current colours will precisely match
the labelled list A: there will be windows in that colour that are not in the list, or
vice versa. So

(a) We examine each colour for windows from our labelled list, with all possible
consistent shifts and orientations;

(b) For each colour and shift, we note the windows from the labelled list that appear
in that colour with that shift (all these windows must have the same shift, or
opposite shift if the orientation is opposite);

(c) We calculate a total “importance score” of these windows to that colour by
totalling the “cost” of removing each of these windows from the colour (that
is, the ratio of the score of the colour with that window, to the score of the
colour without that window);

(d) Finally, we choose the colour and shift that gained the highest “importance
score” by the above definition. The chances of this importance score being
degenerate are negligible, but if it happens, we can make an arbitrary choice.

This defines, at every instant, for each labelled list A, a unique colour associated
with it, which we call C(A), and an associated global shift, S(A). This is the best
match we have to our labelled list in the current configuration.

2. For every window w in the sequences being sampled, whether in the labelled lists
or not, we maintain a set of counters, one for each labelled list, N(w, A). This is
an Nw × Nl matrix, where Nw is the number of windows and Nl the number of
labels.

3. At each time step, for each label A, we go through the windows in the correspond-
ing colour C(A), shift each window w by−S(A) to align properly with the labelled
list if S(A) 	= 0, call the shifted window w′, and increment the corresponding
counter N(w′, A).
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Finally, we divide each counter by the total number of timesteps; this gives, for each
window w and each label A, a time average of the function

f(A, w) = 1 if w ∈ C(A)
= 0 otherwise

which measures how often the window w was “co-clustered” with the labelled list A. In
the infinite-time limit, this is (since each state is visited a fraction of time proportional
to its score)

T (co-clustered)
T (total)

=
∑

S where w co−clustered with A P (S)∑
all S P (S)

(5)

which is intuitively the probability that w was sampled from the same weight-matrix as
the windows in the labelled list A.

Thus, for each label A, on sorting the corresponding row of N(w, A) we get a list
of windows ordered by the probability that they “belong” with the list A.

This turns out to be a very useful strategy, not only in finding unknown motifs, but
in assessing known ones: for example, one can “seed” a sequence with one or two short
sequences of known motifs, and track the known motifs to see who else gets clustered
with them.

5 Performance of the Sampler

We have tested the sampler both on synthetic data generated according to the model we
assume, and on actual genomic data from the five closely related yeast species S. cere-
visiae, S. paradoxus, S. bayanus, S. mikatae, S. kudriavzveii using genes with known
motifs.

The “tracking” mechanism described earlier, apart from being a useful tool in prac-
tice for significance estimates of found motifs, is also a useful benchmarking tool when
looking for known motifs: tracking numbers are a measure, in a quantitative and di-
rectly relevant way, of the probability for each tracked motif site that it was drawn from
the same weight matrix as the others.

On synthetic data, for purposes of benchmarking, we track the known positions of
the weight matrices. In other words, we sample for a long time, and collect statistics on
what fraction of the time the known motif sites actually hang together. (Thus, we are
not benchmarking the anneal, which is the motif-finding step; however, sites that hang
together on sampling are always found in an anneal, though the reverse is not true.)

All tests were with five sequences, generated from a single ancestral sequence of
length 500bp and a certain number n of embedded copies of a motif described by a
weight matrix; the polarisation of the weight matrix, the number n of embedded copies,
and the phylogenetic conservation probability μ were varied.

Phylogibbs results are clearly and consistently better than results with the sampler
without considering phylogeny (treating the sequences as independent), except when
the phylogenetic conservation probability μ is so high that it approaches the weight
matrix polarisation. Results are in figures 3 and 4.
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Fig. 3. Plots showing the frac-
tion of time the Gibbs sam-
pler clusters known motifs to-
gether, for five sequences of
length 500 each descended
from an ancestor, with five
embedded copies of a motif
represented by a weight ma-
trix of polarisation as indi-
cated, mutated according to
our model with conservation
probability μ. The known
positions of the embedded
weight matrices were tracked.
Shown are the tracking scores
of the best motif (“top”) and
the best 3 (phylo) or 15 (non-
phylo) motifs (“avg”), each
averaged over three runs, as
a function of μ. Except when
μ is high enough (0.8) to
compare with or exceed the
polarisation, phylogibbs per-
forms clearly better. In par-
ticular, even when one or a
few motifs may get compara-
ble tracking scores in the ab-
sence of phylogeny, the aver-
age tracking score (here av-
eraged for the top 3 motifs
with phylogeny, or 3 × 5 =
15 motifs without) is far bet-
ter with phylogeny. (The top
3, or 15, were averaged rather
than all 5, or 25, because
in many cases the tracking
scores of the remainder in the
non-phylogibbs case fell be-
low the reporting threshold for
the program)
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Fig. 4. Tracking scores, with and without phylogeny, for synthetic data with μ = 0.5, and n
weight matrices embedded, with wm polarisation 0.75. Shown are the best tracking score (“top”),
and the tracking score averaged over all motifs (“avg”), as a function of n

On real data, this is usually the case, too; sometimes, when motifs are very nu-
merous and prominent, both versions perform very well, and occasionally phylogibbs
does worse, apparently because known motifs lie in conserved regions but are mutated
in other species. We studied a few genes from S. cerevisiae, with well-documented
regulatory sites, that we were interested in for other reasons. We assume a uniform con-
servation probability μ = 0.5 (varying μ from around 0.3 to 0.7 does not make a big
difference to results; μ = 0.3 is a reasonable estimate from synonymous substitution in
coding regions, but in practice cis-regulatory regions seem to have a somewhat higher
conservation rate.) The anneal stage searched for 4 different colours, and 16 possible
regulatory sites (avg: 4 per colour), in the phylogibbs case. Because on average 70%–
80% of the cis-regulatory region seems to fall in aligned blocks, in the non-phylogibbs
case we searched for 64 possible sites (avg: 16 per colour). The results are as follows:

– CLN3 (YAL040C): There are four well-defined copies of an element that has been
called the “daughter delay element” [13], which has been implicated in the delay
in budding in daughter cells. This element has consensus CCWYWGCATTTC and
is instantly picked up by phylogibbs with tracking score 1.00. However, without
incorporating phylogeny this motif is often not picked up at all in the initial anneal,
and when it is picked up it gets a lower tracking score. Apparently this is because
there are several copies of similar motifs such as CCWWW... (half of the MCM1
dimer site, which appears in several places upstream of this gene), CCNNNGC,
and SSATTTC, some of which have neighbouring sequence similar to the DDE,
and these tend to lead the sampler astray.

– HO (YDL227C): We used the first 1000 bp upstream region of this gene, though
it has one of the longest cis-regulatory regions in cerevisiae. With or without phy-
logeny we retrieve numerous copies of the SBF binding site [15] (consensus: CAC-
GAAA) with tracking score 1.00 for numerous copies; the MATα2 site
TTACATCA is also retrieved with tracking score 1.00 with phylogeny, but with-
out phylogeny our runs did not retrieve this motif.
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– CLB1 (YGR108W): This gene is known [14] to be regulated by Ndt80 and contains
the middle sporulation element (MSE) motif GWCACAAA in its cis-regulatory re-
gion, but not very strongly. We recover the motif with phylogibbs, but with tracking
scores of 0.40-0.50. Without phylogibbs, the anneal yields ambiguous results (the
motif is mixed up with other sites) and the tracking yields nothing above the report-
ing threshold (0.05).

– NDT80 (YHR124W): This is a key gene in sporulation [14, 16, 17] and contains
the MSE in its cis-regulatory region; the MSE is bound by the Ndt80 gene product
itself, as well as by Sum1. We find the motif with or without phylogeny, but in this
case the performance is better without phylogeny: tracking scores are around 0.99
without, or 0.6 with. (However, if we use phylogibbs but lower μ to zero – that is,
independent sequences but aligned – performance improves to perfect levels: that
is, all copies of the motif are found with tracking score 1.00.)

The NDT80 example brings up one worthwhile point: the improvement in perfor-
mance of phylogibbs comes partly from improved scoring of phylogenetically related
sequences, but a significant part of the improvement is merely the much smaller state
space when one aligns sequences as we do before sampling. There is a significant re-
duction in entropy: many configurations that are not likely positions of binding sites are
simply removed from the state space. (One can, of course, contrive examples where the
reduced state space hurts rather than helps because important configurations are being
removed, for example because most motifs occur in conserved blocks but are mutated
in all species but one; it’s unlikely this is a common problem in practice.)

Availability of the Code

The code is available for download on
http://www.physics.rockefeller.edu/˜siggia/software/phylogibbs/
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  I    CC    CM    acc    Name          # 
------------------------------------------ 
 4.12 1.000 0.933 M00139 V$AHR_01  3 

 1.00 0.655 0.639 M00528 V$PPARG_03  3 

 1.00 1.000 0.900 A00002 V$AHR_N2  4 

 0.48 1.000 0.905 M00235 V$AHRARNT_01  2 

 2.08 0.861 0.904 M00340 V$ETS2_B  2 

 4.46 1.000 0.927 M00639 V$HNF6_Q6  2 

-0.30 1.000 0.924 A00001 V$AHR_N1  3 

-0.74 1.000 0.956 MT00026 V$AHR_Q5  4 

-0.48 0.939 0.908 M00492 V$STAT1_02  4 

 0.74 1.000 0.921 M00156 V$RORA1_01  1 

------------------------------------------ 
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Abstract. We present an approach to inferring probabilistic models of gene-
regulatory networks that is intended to provide a more mechanistic representation
of transcriptional regulation than previous methods. Our approach involves learn-
ing Bayesian network models using both gene-expression and genomic-sequence
data. One key aspect of our approach is that our models represent states of regula-
tors in addition to their expression levels. For example, the state of a transcription
factor may be determined by whether a particular small molecule is bound to it
or not. Our models represent these states using hidden nodes in the Bayesian net-
works. A second key aspect of our approach is that we use known and predicted
transcription start sites to determine whether a given transcription factor is more
likely to act as an activator or a repressor for a given gene. We refer to this dis-
tinction as the role of a regulator with respect to a gene. Determining the roles
of a regulator provides a helpful bias in learning accurate representations of reg-
ulator states. We evaluate our approach using sequence and expression data for
E. coli K-12. Our experiments show that our models are comparable to, or better
than, several baselines in terms of predictive accuracy. Moreover, they have more
explanatory power than either baseline.

1 Introduction

A significant, central challenge in computational biology is to develop methods that can
elucidate biological networks from high-throughput data sources. In recent years, nu-
merous research groups have developed methods that address the tasks of inferring reg-
ulatory [1] and metabolic networks [2] from data. Such models of biological networks
can have both predictive and explanatory value. To achieve a high level of explanatory
value, a model should represent the mechanisms of the network in as much detail as
possible. In this paper, we describe an approach to inferring regulatory networks from
gene-expression and genomic sequence data. Our approach incorporates several inno-
vations that attempt to provide a more mechanistic representation than those used in
previous work in this area. Our research has focused on prokaryotic genomes, and thus
we empirically evaluate our method using sequence and expression data for E. coli K-12
[3]. Our experiments show that our models are able to provide expression predictions
which are almost as accurate, and sometimes more accurate than several baselines with
less explanatory value.

E. Eskin, C. Workman (Eds.): RECOMB 2004 Ws on Regulatory Genomics, LNBI 3318, pp. 52–64, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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There are numerous factors that make the task of inferring networks from high-
throughput data sources a difficult one. First, the available data characterizing states of
cells, such as microarray data, are incomplete; they characterize the states of cells un-
der a range of conditions that is usually quite limited. Second, there are typically high
levels of noise in some of the available data sources, such as microarray and protein-
protein interaction data. Third, measurements are not available for important aspects
of the biological networks under study. For example, most efforts at network infer-
ence have employed only gene-expression measurements of protein-coding genes and
genomic sequence data. However, in many cases gene regulation, even at the level of
transcription regulation, is controlled in part by small molecules (e.g. IPTG inactivates
the lac repressor), changes in protein states such as phosphorylation (e.g. arcA is acti-
vated through phosphorylation), or expression of small RNAs (e.g. 6S RNA associates
with and regulates RNA polymerase).

Probabilistic models of gene regulation [4–13] are appealing because they can, in
part, account for the uncertainty inherent in available data, and the non-deterministic
nature of many interactions in a cell. The method that we present here builds on recent
work in learning probabilistic graphical models to characterize transcriptional regula-
tion.

Our approach, which involves learning Bayesian networks [14] using both gene-
expression data from microarrays and genomic sequence data, incorporates several in-
novations. First, our models include hidden nodes that can represent the states of tran-
scription factors. It is often the case that expression levels of transcription factors alone
are not sufficient to predict the expression levels of genes they regulate. Transcription
factors may not bind to a particular DNA site unless (or except when) they have bound a
specific small molecule or undergone some post-translational modification. Given only
microarray and genomic sequence data, we cannot directly measure theses states. How-
ever, we can think of these states as latent variables and represent them using hidden
nodes in our Bayesian networks.

A second significant innovation in our approach is that we use known and predicted
transcription start sites to determine whether a given transcription factor is more likely
to act as an activator or a repressor for a given gene. We refer to this distinction as the
role of a regulator with respect to a gene. To do this, we take advantage of a detailed
probabilistic model of transcription units that we have developed in previous work [15].
Depending on the relative positions of a transcription factor binding site and a known
or predicted promoter, we get an indication as to whether the transcription factor is
acting as an activator or a repressor in a given case. We use this information to guide
the initialization of parameters associated with the hidden nodes discussed above.

2 Approach

In this section, we first describe how we use Bayesian networks to represent various as-
pects of transcriptional regulation networks. A Bayesian network consists of two com-
ponents: a qualitative one (the structure) in the form of a directed acyclic graph whose
nodes correspond to the random variables, and a quantitative component consisting of a
set of conditional probability distributions (CPDs). We then discuss how we learn both
the structure and the parameters of our networks.
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Fig. 1. (a) An example network with three regulators (purR, metR, and metJ), two cellular con-
dition variables (Growth Medium and Growth Phase), and four regulated gene variables (glyA,
hmpA, metA, and metE). (b) A possible CPD-Tree for the hidden node metJ-state. (c) A pos-
sible CPT for the regulatee node, metE, whose expression states are defined by a two-Gaussian
mixture.

2.1 Network Architecture

Our models contain four distinct types of variables on three distinct levels. An example
is shown in Fig. 1 (a). On the top level, there are nodes that represent the expression
of regulators (genes whose products regulate other genes), and also nodes that repre-
sent the cellular conditions under which various gene-expression measurements were
collected. On the bottom level, there are nodes representing the expression of genes
known or predicted to be influenced by the regulators on the top level (we refer to these
genes as regulatees). On the middle level, there are hidden nodes, one paired with each
regulator node. These hidden nodes represent the “states” of the corresponding regula-
tors. The parents of each hidden node are selected from a set of candidates that includes
both the corresponding regulator expression node and the cellular condition nodes. The
parents of each regulatee node are the hidden nodes corresponding to the regulators
known or predicted to have a regulatory influence over that gene.

Each hidden node has two possible values, which can be interpreted as “activated”
and “inactivated.” As discussed in Section 1, regulators, such as transcription factors,
are often activated or inactivated by effectors, such as small molecules. Although we do
not have data that will allow us to directly detect the effectors for specific regulators,
the network-learning algorithm can use cellular condition nodes as surrogates for these
effectors. Consider for example, the transcription factor CAP which is activated by the
small molecule cAMP. Our data do not contain cAMP measurements, but our method
may learn that the absence of glucose in the growth medium is predictive of when CAP
is activated. Thus the method has learned that glucose absence is a good surrogate for
cAMP.
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2.2 Representing Gene Expression States

We represent the expression levels of genes using a Gaussian mixture model [16]. We
assume that most genes have multimodal expression-level distributions, with each mode
corresponding to an “expression state” of the gene. Each Gaussian in the mixture repre-
sents the range of expression values for one state of the gene. Fig. 2 shows the mixture
model inferred by our method for the metE gene.
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Fig. 2. Expression measurements for the gene metE, and a two-Gaussian mixture which describes
its states. Expression measurements are plotted near the x-axis.

We use cross validation to choose the number of Gaussians in each mixture. Let
x be the set of expression values for a given gene. For each fold, i, of cross valida-
tion, we divide x into two subsets, training data x

′
i and held-aside data x

′′
i . We use an

expectation-maximization (EM) algorithm to optimize the parameters, Φi (the mean,
variance and weight of each Gaussian in the mixture). However, we constrain the pa-
rameters so that the Gaussians are sufficiently far apart to ensure they each cover a
separate range of expression values. Specifically, each Gaussian must have the highest
probability density at each expression level within two standard deviations of its mean.
The EM algorithm will attempt to optimize Φi as argmaxΦiP (x

′
i|Φi), but only a local

optimum is guaranteed. We then use the held-aside data to calculate the score for this
fold as scorei = P (x

′′
i |Φi). We repeat this process for one, two, or three Gaussians

in a mixture. We choose the number of Gaussians associated with the highest score,∑
i scorei, provided that a pairwise, two-tailed t-test determines the improvement to be

statistically significant over the scores obtained from mixtures with fewer Gaussians.
Once the number of Gaussians has been settled, we use the EM algorithm to optimize
the final parameters Φ as argmaxΦP (x|Φ), and consider each individual Gaussian to
represent an expression state for that gene. If our method selects a mixture model with
only one Gaussian for a given gene (i.e. there is only one expression state of this gene in
the training set), then the gene is not included in the network model. In our experiments,
this is the case for roughly half of the genes considered. About 90% of the remaining
genes have two expression states, and 10% have three.
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In order for our network to learn from data, we must express these data in terms of
values of the variables in our network. For the regulator and regulatee nodes, these are
expression states of the genes, but our evidence consists of expression measurements.
Since the expression states are described by Gaussians over the expression values, it
is straightforward to calculate a probability distribution over the expression states for
each gene, given an expression measurement. These probability distributions are what
we use as the evidence concerning the states of genes. Because of the constraints on the
distance between Gaussians and the fact that they are positioned using the data, most
such distributions will clearly favor a single Gaussian (gene expression state) over any
other.

2.3 Representing Conditional Probability Distributions

As shown in Fig. 1 (b), we use trees to represent the conditional probability distribu-
tions for the hidden nodes in our networks. Each tree represents the distribution over
values (i.e. states) of the corresponding hidden node, conditioned on the values of the
node’s parents. Recall that the candidate parents for each hidden node consist of the
regulator expression level as well as the complete set of cellular condition nodes. We
use trees to represent these CPDs for three key reasons. First, we assume that only a few
of the candidate parents are relevant to modeling the regulator state, and thus we want
the model to be able to select a small number of parents from a fairly large candidate
pool. Second, trees provide descriptions of regulator states that are readily comprehen-
sible and thus they can lend insight into the mechanisms which determine a regulator’s
behavior. Third, the trees can account for cases in which there is context-sensitive in-
dependence in determining a hidden node’s probability distribution. In the sample tree
shown in Fig. 1 (b), note how “Growth Phase” is only relevant if the regulator metJ has
expression “HIGH.” Note also how “Growth Medium” is not chosen as a parent at all.

Using our current data set, each regulatee in the network has a relatively small
number of parents (between one and four), and we expect each parent to be relevant, so
we use conventional conditional probability tables (CPTs) for the regulatee nodes, as
shown in Figure 1 (c). The CPT for each regulatee node represents the distribution over
the possible expression states of the particular gene, conditioned on the possible states
of its parents.

2.4 Learning Network Parameters

Recall that each hidden variable is binary, and we refer to the possible values as “ac-
tivated” and “inactivated”. Since these states are unobserved, we cannot calculate the
CPDs for the hidden and regulatee nodes directly. Instead, we set their parameters with
an EM algorithm wherein we refine the CPDs iteratively until they converge to a local
optimum which is consistent with the observed training data. Let se

R,i represent the ob-
served expression state of the ith regulator in experiment e, and let se

r,i represent the
observed expression state of the ith regulatee. Similarly, let se

c,i denote the state of the
ith cellular-condition variable in experiment e. We use Θ to represent all of the param-
eters of a Bayesian network, including the parameters (and structure) of each CPD tree
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and of each CPT. The EM algorithm adjusts the parameters trying to maximize the joint
probability of the expression states across all experiments, given the cellular conditions:

Θ̂ = arg max
Θ

∏
e

P (se
R,1, ..., s

e
R,m, se

r,1, ..., s
e
r,n | se

c,1, ...s
e
c,k, Θ).

Here m is the number of regulators in the network, n is the number of regulatees, and k
is the number of cellular-condition variables. We assume that we are always given the
values of the cellular-condition variables, and thus our model represents the probability
of the expression states conditioned on these values. The details of the E-step and M-
step in this context are as follows.

E-Step: Let Se
h,i represent the (unobserved) state of hidden node i in experiment e (we

use uppercase S to denote random variables in the Bayesian network and lowercase s to
denote particular values the variables can take). In the E-Step, we compute the expected
distribution over values of Se

h,i for each e and each i, given the observed expression
states of the regulators and regulatees, and the observed cellular conditions:

P (Se
h,i|se

R,1, ..., s
e
R,m, se

r,1, ..., s
e
r,n, se

c,1, ...s
e
c,k, Θ).

This is computed as a Bayesian network query using variable elimination [17]. If the
probability that a certain Se

h,i takes on the value “activated” is 0.7, then Se
h,i is treated

as being 70% an “activated” data value and 30% an “inactivated” data value.

M-Step: Once these expected values are calculated, we use our now complete set of
data to recalculate the network parameters. Let Θh,i refer to the CPD parameters for the
ith hidden node and let Θr,i refer to the CPT parameters for the ith regulatee node. In
the M-step, we attempt to maximize:∏

e

P (se
R,1, ..., s

e
R,m, se

r,1, ..., s
e
r,n, se

h,1, ..., s
e
h,k | se

c,1, ...s
e
c,k, Θ).

where se
h,1, ..., s

e
h,k denotes the expectations for the hidden nodes calculated in the E-

step. Each CPD-tree for hidden variable i, represented by Θh,i, is re-grown by selecting
a variable to split on (regulator expression state or cellular condition variable) which
separates the set of expected values for the hidden variable, {se

h,i}, over all experiments

e, into two subsets, Sleft
h,i and Sright

h,i , such that the classification error when considering

the values in Sleft
h,i and Sright

h,i to be either “activated” or “inactivated” is minimized.
This process recurs on both subsets until no candidate split will further separate the
data. A probability distribution over Sh,i is then calculated for each leaf in the tree
based on {se

h,i} for the experiments e contained in that leaf’s subset. Subtrees with
a common ancestor that have nearly the same probability distributions over Sh,i are
pruned using an approach based on minimum description length (MDL), similar to one
developed by Mehta et al. [18]. These pruned trees may not maximize the probability
of the hidden states exactly, as do their unpruned counterparts. In practice, however,
pruning speeds up convergence without sacrificing accuracy. Each regulatee CPT, Θr,i,
is also recalculated in the standard way during the M-step using {se

r,i} and {se
π(i)},

where π(i) is the set of parent nodes of regulatee node i.
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Fig. 3. (a) An example promoter configuration with one regulator binding site on each side of the
-35 position. (b) A CPT for the gene that has been initialized based on the configuration of these
two regulator binding sites.

2.5 Initializing Network Parameters

The EM algorithm described above will converge to a local optimum. In order to guide
the network to converge to a good solution, we initialize the CPT for each regulatee
based on prior knowledge about the roles of each its regulators. Specifically, for each
regulatee we consider the relative location of the transcription start site, which is ei-
ther known or predicted [15], and the binding sites for the regulators, which are also
either known or predicted. We tentatively designate as activators those regulators that
bind strictly upstream of the regulatee’s promoter (which is estimated to extend 35 nu-
cleotides upstream of its transcription start site), and we tentatively designate all other
regulators as repressors. In the CPT for each regulatee, we assign a higher probability
to the highest expression state when the putative activators are in the “activated” state,
and we assign a higher probability to the lowest expression state when the putative re-
pressors are in the “activated” state. We put more weight on this effect for repressors,
which are believed to have a more stringent control on expression, and we put more
weight on this effect when the regulatee’s transcription start site is known than when it
is only predicted. This initialization process is illustrated in Fig. 3.

3 Empirical Evaluation

In this section we present experiments designed to evaluate our Bayesian networks that
(a) use hidden nodes to represent regulator states, (b) attempt to compensate for missing
regulators, and (c) have the parameters associated with these nodes initialized to reflect
their predicted roles (activator or repressor) with respect to individual genes.

3.1 Experimental Data and Methodology

We initialize the topology of our networks using 64 known and predicted E. coli reg-
ulators and their 296 known and predicted regulatees. The known instances are from
TRANSFAC [19] and EcoCyc [20], and the predicted instances are based on binding
sites predicted from cross-species comparison [21]. Our gene-expression data comes
from a set of 90 Affymetrix microarray experiments [22]. Each array is annotated with
experimental conditions, and the data are normalized using the robust multiarray aver-
aging (RMA) technique [23].
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We divide the microarray experiments into sets for which all of the annotated cel-
lular conditions are identical (we call these replicate sets). From the original 90 ex-
periments, there are 42 of these sets. The largest contains five experiments, and the
others are copied so that each replicate set contains exactly five experiments. To assess
model accuracy, we use leave-one-out cross-validation on each replicate set. That is,
we hold one set of five identical experiments aside, train the model on the remaining
experiments, and then evaluate the network on the held-aside data. For each testing ex-
ample, we provide the network with expression levels of the regulators and the values
of the cellular conditions, and then calculate a probability distribution over the possible
expression states for each regulatee.

We evaluate the accuracy of our models using three measures. First, we calculate
classification error as the extent to which the network predicts the incorrect expression
states for each regulatee and experiment. Instead of calculating this error using “hard
predictions” of the expression state of each regulatee, we take into account our uncer-
tainty in each predicted expression state as well as the uncertainty in the discretization
of each gene. In particular, we calculate classification error as follows:

class error = 100% ×
(

1 − 1
E

1
n

E∑
e=1

n∑
i=1

∑
d

PΘ(Se
r,i = d)PΦ(Se

r,i = d|xe
r,i)

)
.

Here PΘ(Se
r,i = d) is shorthand for P (Se

r,i = d|se
R,1, ..., s

e
R,m, se

c,1, ..., s
e
c,k, Θ)

which is the probability, as predicted by the Bayesian network, that the ith regulatee is
in state d for experiment e, given the expression values of the regulators and the cellular
conditions. PΦ(Se

r,i = d|xe
r,i) represents the probability that the regulatee is in state d

given expression measurement xe
r,i, according to the Gaussian mixture model for this

gene. Second, we compute the average squared error, where the error is the difference
between the actual expression value and the means of the Gaussians representing each
expression state, weighted by the predicted distribution over these states:

ASE =
1
E

1
n

E∑
e=1

n∑
i=1

∑
d

PΘ(Se
r,i = d)(μr,i,d − xe

r,i)
2.

Here, μr,i,d is the mean of the Gaussian for state d in the mixture model for the ith
regulatee. Third, we calculate the joint log probability of all test-set expression val-
ues, again taking into account our uncertainty in each predicted expression state and in
discretization of each gene:

log probability =
E∑

e=1

n∑
i=1

log

(∑
d

PΘ(Se
r,i = d)PΦ(Se

r,i = d|xe
r,i)

)
.

We apply pairwise, two-tailed t-tests to test the statistical significance of differences
between methods.

3.2 Experiment 1: The Value of Representing Regulator States

In order to test the value of including hidden nodes that represent regulator states, we
compare against two baselines, examples of which are shown in Fig. 4. The first base-
line employs Bayesian networks that have nodes representing the expression levels of
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Fig. 4. Examples of the two baseline networks used in Experiment 1. These are the counterpart
baselines for the network shown in Fig. 1.

regulators and regulatees, but which do not have hidden nodes representing regulator
states. The second baseline augments the first by also incorporating cellular condition
nodes, but it too does not have hidden nodes.

Table 1 shows the totals over all test folds for all three measures. For each of these
measures, our models are more accurate than the baseline models which do not have
hidden or cellular condition nodes. The differences are statistically significant at a con-
fidence of over 99% for classification error and average squared error. The difference
in overall probability is not statistically significant at a confidence of more than 95%.
The baseline networks that include cellular condition nodes provide slightly more ac-
curate predictions than our models with hidden nodes. However, we argue that these
baseline models have a significant limitation in they do not provide a very mechanistic
description of regulatee expression. That is, they do not directly represent the states of
regulators and how these states govern the expression of regulatees. Thus, they have
less explanatory power than our models.

Table 1. Predictive accuracy for the models with hidden nodes and the two baselines.

Classification Average Log
Model Variant Error Squared Error Probability
Full Model 16.59% 0.59 -12,066
Without Hidden Nodes 12.42 0.51 -12,193
Without Hidden or Cellular Condition Nodes 22.16 0.75 -13,363

Note also that our models show an improvement in overall log probability when
compared to each of these baselines. Since the overall probability is a product of reg-
ulatee expression probabilities, an incorrect prediction with a probability very close to
zero can have an unbounded effect on the final measurement. We hypothesize that our
models make fewer of these extreme probability predictions because the regulatees are
constrained by binary-valued parents.

3.3 Experiment 2: Discovering Missing Regulators

It is certainly the case that some relevant regulators are not represented in our networks.
In this section, we consider a simple approach that dynamically adds hidden nodes to
the networks. This approach tries to identify sets of regulatees for which a network
makes incorrect predictions on many of the same training examples. After first training
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a network using the EM approach described earlier, we recursively cluster regulatees
that share at least 50% of training examples incorrectly predicted by either regulatee (or
cluster). A new hidden node is created for each cluster and this node becomes a parent
of the regulatees in the cluster. The network is then re-trained using the EM approach.
This procedure may be iterated a number of times.

Table 2 shows the resulting accuracy with up to three iterations of this procedure.
Each iteration decreases the classification error of the models, and each decrease is sta-
tistically significant at a confidence above 97%. For the average squared error measure,
only the decrease in error from the original model to any of the other three is statisti-
cally significant (at a confidence of 95% or greater). The application of this procedure
improves the overall probability, but it does not continue to increase over multiple iter-
ations. The differences in overall probability are not statistically significant.

Table 2. Predictive accuracy for the models with added hidden nodes.

Iterations Classification Error Average Squared Error Log Probability
0 (Original model) 16.59% 0.59 -12,066
1 14.23 0.53 -11,586
2 13.65 0.51 -11,987
3 13.34 0.51 -12,004

Notice that this technique improves all three of our measurements, and that the clas-
sification error approaches that of the baseline without hidden nodes shown in Table 1,
yet still provides models that explain relevant regulatory mechanisms.

3.4 Experiment 3: The Value of Initializing Regulator Roles

Recall that, before we train our network, we initialize the CPTs of the regulatee nodes
based on the relative positions of known and predicted regulator binding sites and
known or predicted promoters. We hypothesize that this initialization process will guide
the EM algorithm toward a better solution. To evaluate the effectiveness of this tech-
nique, we compare the accuracy of our approach to a variant in which we initialize the
parameters randomly. We also apply the technique of adding hidden nodes as described
in the previous experiment because this increases the parameter space, and, one would
expect, the importance of a good initialization.

The results of this experiment are shown in Table 3. Our initialization technique im-
proved both the classification error and the average squared error, and the improvement

Table 3. Predictive accuracy for models with promoter-based parameter initialization and random
initialization.

Initialization Classification Error Average Squared Error Log Probability
Using Promoter Data 13.34% 0.51 -12,004
Random 14.19 0.54 -11,893
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is statistically significant at a confidence above 96% for both measures. The technique
did not improve the overall probability, however the decrease is not statistically signif-
icant. Repeating the experiment using random initialization many times on the same
fold of cross validation, we estimate the standard deviation of the classification error at
about 0.63% and of the average squared error at about 0.028. Notice that our initializa-
tion technique is an improvement over random initialization of at least this much. The
standard deviation for log probability is estimated at about 25.53.

4 Conclusion

In addressing the problem of inferring models of transcriptional regulation, we have
developed an approach that is able to learn to represent the states of regulators (i.e.
whether a transcription factor is activated or not) as well as their roles (i.e. whether
a transcription factor acts as an activator or repressor for a given gene). We have em-
pirically evaluated our approach using gene-expression and genomic-sequence data for
E. coli K-12. Our experiments show that both of these aspects of our approach result in
models with a high level of predictive accuracy.

There are a number of extensions to our approach that we plan to investigate in
future research. First, in keeping with our goal of learning more mechanistic repre-
sentations, we plan to extend our models to account for additional types of regulatory
mechanisms, such as riboswitches [24]. Second, we plan to adjust our approach so that
we can relax some of the simplifying assumptions we have made in our initial work,
such as the assumptions that genes have only one transcription start site, regulators have
only one binding site in a given promoter region, and genes have distinct modes in their
expression-level distributions. Third, we plan to extend our method so that the process
of adding candidate regulators to a network involves looking for evidence of these reg-
ulators (e.g. transcription factor binding sites) in the genomic sequence. All of these
proposed extensions are aimed at advancing the theme of learning models that exploit
multiple sources of data, and attempt to provide mechanistic descriptions of regulatory
relationships.
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Abstract. The combination of gene expression data and genomic sequence data
can be used to help discover putative transcription factor binding sites (TFBSs).
There are two major approaches to incorporating expression data into the dis-
covery of TFBS. The first approach clusters genes according to their expression
patterns. Then, over-represented sequences are sought, in the promoter regions
of co-expressed genes [31, 15, 14]. A second approach uses a single expression
experiment and attempts to determine which transcription factors are involved in
the experiment [24, 16, 29, 12].
In this paper, we present RIM-Finder, a further development of the second ap-
proach. Our method also enables the discovery of mRNA stability motifs and
motif phrases. Phrases are either single motifs (a TFBS candidate or a RNA sta-
bility motif candidate) or pairs consisting of both types of motifs and a certain
logical relation between them. Our approach discovers all (potentially degener-
ate) phrases that are statistically significant with respect to their distribution in a
ranked list of sequences under either a non-parametric model or a Student t based
model. In order to allow the identification of phrases consisting of both DNA
and RNA motifs we rank sequence pairs consisting of promoters and mRNA un-
translated regions (UTRs). We apply RIM-FINDER to discover putative phrases
using cell stress response expression, mRNA decay rate measurements and mu-
tant expression in yeast.

1 Introduction

Cellular levels of mRNA molecules are largely influenced by transcription rates as well
as by degradation rates. The role of transcription factor binding sites (TFBSs) and there-
fore of promoter region sequence motifs is well recognized and well studied. Evidence
is also emerging that links mRNA degradation processes to sequence motifs. These mo-
tifs specifically bind regulatory proteins or small regulatory RNA molecules and thus
affect the stability of the mRNA molecule of the sequence in which they reside. For ex-
ample, a recent study suggests that gene expression may be regulated, at least in part, at
post-transcriptional level, by factors inducing extremely rapid degradation of mRNAs
[2]. These factors include reactions between adenyl-uridyl-rich elements (AREs) of the
target mRNA and specific proteins that bind to these elements.
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In this paper we suggest methods that facilitate the discovery of motifs that influ-
ence RNA stability by investigating whole genome expression profiling data and their
relationship to promoters and RNA UTR sequences. We identify candidate motifs that
contribute to RNA stabilization or de-stabilization.

Our methodology framework is based on searching phrases of motifs that are highly
correlated with expression levels. These phrases are either single motifs (a TFBS candi-
date or a RNA stability motif candidate) or pairs consisting of both types of motifs and a
certain logical relation between them. The logical relationship between DNA and RNA
motifs in a phrase allows us to hypothesize functions. For example, using the union
relation between an enhancer TFBS and a RNA stabilizer corresponds to each of these
motifs being sufficient to induce high mRNA levels by itself. Another example is the
intersection relation between a repressor TFBS and a RNA de-stabilizer which corre-
sponds to both motifs being necessary in order to entail low mRNA levels. Motifs bases
on logical phrases are also studied in [30]. In order to identify significant phrases we
consider pairs of sequences each consisting of the promoter and the 3’UTR of a single
gene. These pairs are ranked according to gene expression. Ranking can also be induced
by separation scores (for many experiments) [1, 20], ChIP on chip measurements [7],
or any other relevant experimental results. The intuition behind our framework is that
in either the highly over-expressed or highly under-expressed genes the sequence pairs
will be enriched by hits of active phrases. We are therefore seeking motifs or phrases
that occur in a rank-imbalanced manner in the ranked list of genes. A RIM (rank imbal-
anced motif) is a sequence motif which occurs with statistically significant frequency
at either end of a ranked list, compared to its over-all frequency. The same intuition is
also the basis of several previous studies that describe the use of a single expression
experiment to facilitate the discovery of TFBSs. For example, Jensen and Knudsen,
2000[24] employed a non-parametric approach to discover motifs in the upstream re-
gions of genes which are significant with respect to the ranking of the genes based on
expression values for a single experiment. Bussemaker et. al. , 2001[16] presented the
REDUCER algorithm which introduces the concept of motif regression where a linear
model is assumed to underlie the expression data and the variables in the linear model
are indicator variables corresponding to the presence of specific motifs. REDUCER also
takes motif multiplicity into account when assessing a motif correlation with a set of
expression values. Both of these approaches consider motifs as exact matching words.
MOTIF-REGRESSOR, introduced in Conlon et. al. , 2003 [12], also assumes a similar
linear model to REDUCER but improves by being able to find longer motifs and motifs
with degenerate positions. MOTIF-REGRESSOR first identifies candidate motifs that
are over represented in either the most over or under expressed genes and then uses the
candidates to find the best motifs that correlate with expression. This method is shown,
in the simulation experiments of [12], to find motifs in practice, but does not give any
guarantees of finding the most significant motifs. Another related work is the approach
of Keles et. al. , 2002[29] which also assumes a linear model of motif occurrence to
expression levels and uses a feature selection method to discover the best motifs.

We score correlation between expression and phrase occurrence using both a non-
parametric approach similar to the one used by [24] and a Student t approach which we
developed for this purpose. To cope with the computational task involved in discovering
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significant phrases we have developed RIM-Finder, the core of which is an algorithmic
framework which allows us to efficiently perform a search over large sets of phrases
composed of pairs of motifs and the logical symbols NOT AND and OR. We employ
efficient data structures to allow this search. In Appendix A we show that, under a
certain formulation, the problem of finding RIMs is NP-Complete.

A confusion can occur between RNA and DNA motifs, when using our approach,
especially if one uses 5’UTRs that are very close to the promoters and can contain active
TFBSs. Thus, in order to make sure that our approach is able to identify motifs influ-
encing RNA stability we used two different strategies. First, we applied RIM-Finder to
yeast 3’UTRs and 5’UTRs and their measured decay rates. Since the mRNA decay rate
is totally independent of the molecule transcription rate, the identified motifs can only
be related to RNA stability. Second, we applied RIM-Finder to yeast expression data
including stress and cell cycle, but we used only the 3’UTRs with promoters. In the
latter case the identified RNA motifs can only influence RNA stability as in yeast most
of the transcription regulation is known to occur in the promoters that are far enough
from the 3’UTRs. Some significant RNA and DNA motifs as well as combined phrases
were found in all of the above calculations. Lastly, to further validate our approach,
we applied RIM-Finder to expression profiles of yeast mutants and of yeast cells with
constituent over-expression; using promoter region sequences only. We show that the
related TFBSs are successfully discovered.

2 Statistical Scores

2.1 Non-parametric Statistics

In order to evaluate the significance of a candidate phrase, we first rank the given genes
by their expression levels and then label the genes as follows: genes whose promoters
and UTRs contain the phrase are labeled by ‘+1’ while the others are labeled by ‘-1’.
One example is a phrase consisting of the union of a DNA motif and a RNA motif.
In this case it is sufficient that the gene’s promoter contains the DNA motif or that the
corresponding UTR contains the RNA motif for the gene to be labeled by ‘+1’. If the
given phrase is active under the studied condition, i.e. if it influences mRNA levels, then
the ‘+1’s are expected to have denser representation in one side of the labeled vector.
On the other hand, if it is not active then the ‘+1’s and ‘-1’s will be interspersed. A
phrase or a motif is said to be rank imbalanced if their occurrence vector is imbalanced
in a statistically significant manner. We can also hypothesize the effect of the phrase and
of each of it’s motifs. For example, if the ‘+1’s are over-represented at the top of this
vector and the phrase is D OR NOT R where D is a DNA motif and R a RNA motif; we
say that it induces high mRNA levels and that D is an enhancer and R is a de-stabilizer.
However, if the ‘+1’s are over-represented at the bottom we say that D is a repressor
and R a stabilizer.

The minimum hyper geometric score (mHG) is a natural way to evaluate the signif-
icance of the given motif, based on partitions of the corresponding occurrences vector
G. It corresponds to the partition that best divides G ∈ {+1,−1} into a prefix and suf-
fix, such that both are maximally homogeneous in terms of the symbols they contain.
Formally, the mHG score of a vector G is defined as:
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mHG(G) = minx;y=GHG(x, G) (1)

where x; y denotes a partition of G into a prefix x and a suffix y and

HG(x, G) =
n∑

i=Mx

(
M
i

)(|G|−M
n−i

)
(|G|

n

) . (2)

Here |G| represents the total number of genes, M is the total number of occurrences of
the motif or the number of ‘+1’s, Mx is the number of ‘+1’s in the prefix x and n is
the length of x. The p-values of the mHG score differ from the hyper geometric (HG)
scores at which the mHG value is attained, since we must adjust for the multiple tests
represented by different vector partitions. An upper bound on the p-value of any mHG
level, can be obtained by multiplying it by the length of the vector, |G|:

p-Val (mHG(G) = s) ≤ |G|s. (3)

2.2 A Student t Approach

Unlike the non-parametric approach, which only takes into account the positions of the
genes in the ranked list, this approach accounts for the actual expression levels of the
genes. Moreover, when checking the significance of a single motif, it can be adjusted to
take into account occurrence multiplicities. In this approach we check the significance
of a phrase by performing a t-test to compare two distributions: the first, xphrase is the
distribution of the set of expression levels of genes containing the phrase. The second,
xothers is the distribution of expression levels of all other genes. We adjust to multiple
occurrences in the case of a single motif by adding gene expression levels to xphrase

multiplied by the number of times the motif occurs in relevant sequence, be it promoter
or UTR. To evaluate the statistical significance of a motif we use a t-test as follows:

THEOREM Let x1 and x2 be two observations and let n1 and n2 be their sizes re-
spectively. Let x denote the mean of sample x, and SDx it’s standard deviation. Let

SD =
√

2SDx1(n1−1)+2SDx2(n2−1)

n1+n2−2 . If x1 and x2 were sampled from the same normal

population and assuming that n1 + n2 ≥ 30 then t = x1−x2

SD
√

1/n1+1/n2
has an approxi-

mate standard normal distribution.

In order to check whether a phrase is active in a given condition we want to reject
the hypothesis that xphrase and xothers were sampled from the same population and,
therefore, accept the hypothesis that the presence of the motif affects mRNA levels.
Therefore, we calculate Φ(t), the corresponding level of significance associated with t.
If it is significantly small and xphrase ≥ xothers we conclude that the phrase induces
high mRNA levels. On the other hand, if xphrase ≤ xothers we conclude that the phrase
induces low mRNA levels.

3 Algorithmic Approach

The core of the approach is an efficient algorithm for performing the search through IU-
PAC patterns. For each IUPAC pattern, we determine exactly which sequences contain
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instances of a given IUPAC pattern and once we obtain the instances, we can com-
pute either the mHG or Student t p-value. The algorithm for performing the search is a
variant of the SPELLER algorithm described in Sagot, 1998[25].

The algorithm works on two trie data structures. A trie is a rooted tree with each
edge labeled with a single symbol. The first is the data trie which contains a compressed
representation of the data. The second is the pattern trie which represents the space of
patterns in the search.

Consider the search for IUPAC patterns of length l. The data trie is created by
considering all substrings in the data of length l extracted by a sliding window. The
data trie is a rooted tree of depth l with each branch labeled with a nucleotide symbol
{A, C, G, T}. The labels along the path from the root of the trie to the leaves correspond
to the specific l-mer. Each leaf of the trie (depth l) corresponds to a specific l-mer and
contains pointers to all occurrences of the l-mer in the data. Each internal node corre-
sponds to all l-mers in the data which contain as a prefix the path from the root to the
node. The data trie can be thought of as an index for the data. By following a path in
the trie, we can efficiently recover the occurrences of any l-mer of interest. The trie is
constructed as a preprocessing step to the motif search and can be constructed in linear
time with respect to the total length of the sequence data.

The pattern trie corresponds to the space of IUPAC patterns. The pattern trie is
a rooted trie of maximum depth l with each branch labeled with one of the IUPAC
symbols in Table 1. Each leaf node (of depth l) corresponds to the IUPAC pattern of
length l defined by the path from the root of the pattern trie to the leaf. A node in
the pattern trie corresponds to the node in the data trie if the substring along the path
from the root of the data trie to the data trie node matches the IUPAC pattern along the
path from the root of the pattern trie to the pattern trie node. We will describe below
how we construct the tree so that each leaf node contains a pointer to each leaf node
in the data trie where the l-mer corresponding to the data trie leaf node matches the
IUPAC pattern corresponding to the pattern trie leaf node. Using these pointers and
the pointers from the data trie to the instances of the l-mers, we can recover all of the
instances of substrings corresponding to the IUPAC pattern from the data. Traversing
the entire pattern trie and checking the significance of each leaf node is equivalent to
performing the full motif search.

The pattern trie is traversed and constructed in a depth first manner. The pattern trie
is a virtual trie, i.e, only a single branch of the tree from the root to the current node is
stored in memory. Each node in the pattern trie contains pointers to the corresponding
nodes in the data trie at the same depth. Note that the root of the pattern trie contains a
single pointer to the root of the data trie. The set of pointers for any node in the pattern
trie can be efficiently derived from the set of pointers from its parent node by following
all of the valid symbols with respect to the last symbol in the pattern from the nodes
pointed to by the parents.

Consider the following example where l = 2. Initially, the pattern trie consists of
only a root node pointing the root of the data trie. As we start the depth first traversal of
the pattern trie, we construct the branch corresponding to A. The pointers for this node
will consist of a single pointer to the node corresponding to A in the data trie since A
is the only symbol that matches the IUPAC pattern. However, as the search progresses,
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Table 1. IUPAC Alphabet for Nucleotide Sequences

Symbol Meaning Origin of Description
A A Adenine
C C Cytosine
G G Guanine
T T Thymine
M A or C aMino
R A or G puRine
W A or T Weak interaction (2 H bonds)
S C or G String interaction (3 H bonds)
Y C or T pYrimidine
K G or T Keto
V A or C or G not-T (not-U), V follows U in alphabet
H A or C or T not-G, H follows G
D A or G or T not-C, D follows C
B C or G or T not-A, B follows A
N A or C or G or T aNy

we will end up following the branch M and in that case the pointers will consist of the
set pointing to nodes corresponding to A and C.

Since in the traversal we will only reach the IUPAC patterns that have at least one
occurrence in the data, if we only consider the pattern alphabet without degenerate
symbols our search embodies a linear time implementation of REDUCER.

Note that for the complete IUPAC pattern space, the number of leaf nodes that need
to be traversed is upper bounded by 15l which is impractical. However, in practice,
the symbols that correspond to 3 nucleotides (V, H, D, B) are not very useful since
they are captured in the combination of N and the symbols that represent 2 nucleotides
(M, R, W, S, Y, K). In practice, we do not need to search over the entire 11l space of
patterns since a priori we know that very degenerate patterns are unlikely to have bi-
ological meaning. For our experiments we consider two IUPAC alphabets, a reduced
degenerate alphabet consisting of the symbols {A, C, G, T, N} and a full degenerate
alphabet {A, C, G, T, M, R, W, S, Y, J, N}. Our implementation allows the user to de-
fine the maximal number of degenerate symbols in a pattern.

We extend the method to discover tandem motifs or motifs which have two con-
served regions of length l separated by un-conserved spacing of length s. For example,
consider motifs with 2 regions of 4 nucleotides separated by 8 nucleotides. Often, TF-
BSs have this form since the TF’s three dimensional structure drives it to bind in two
locations which will be conserved, interspaced by a region that is not conserved since
it is not involved in the actual binding. The only modification we need to make to the
algorithm is that when constructing the data trie, we slide a window of length 2l + s
and construct the trie out of substrings of length 2l representing the concatenation of
the two conserved regions with the un-conserved spacing removed.

Logical motifs are discovered using the same data structure. The algorithm performs
a depth first search over all patterns A and B. We first traverse the trie to search for
pattern A. At each node in the search, we obtain a vector that records the sequences
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where pattern A occurs. We then traverse the trie again to discover B. At each node
of this trie we obtain a vector that records where pattern B occurs. We then compute
the occurrences of the logical motif by performing the appropriate operation on the two
vectors. For example, if we are looking for the occurrences of the motif A AND B, we
would perform an AND operation on the two vectors.

4 Results

4.1 RNA Stability Related Motifs

The abundance of each mRNA in the cell is determined not only by the rate at which
it is produced, but also by it’s decay rate. The decay rates of mRNA molecules can
vary by 100-fold or more between different cell conditions [18, 10]. These rates are
affected by a wide variety of stimuli and cellular signals, including: specific hormones
[18, 19], iron [21, 4], cell cycle progression [26], cell differentiation [3, 17], and viral
infection [9]. Proteins can effect mRNA decay rate by recognizing specific motifs in
it. For example, many mRNA molecules with fast decay rates contain the sequence
AUUUA in the 3’UTR, which de-stabilizes the mRNA by binding the cleavage and
polyadenylation specificity protein factor (CPSF).

Genomewide determination of mRNA decay rates can be achieved by coupling
a global transcriptional shut-off assay with DNA microarray analysis consisting of
multiple temporal measurements of mRNA levels [33, 13]. Transcriptional shut-off is
achieved by shifting the temperature of RNA polymerase II temperature sensitive mu-
tants to 37◦. A nonlinear least squares model can be fitted to estimate the decay rate k,
of each mRNA. k is the value that minimizes

∑n
1 〈y(ti) − exp(−kti)〉2, where y(t) is

the mRNA abundance at time t and the summation is taken over all time point observa-
tions. In Wang et al [33], for example, transcriptional shut-off was achieved by abruptly
shifting the temperature from 24◦ to 37◦, and microarray analysis was performed at 0,
5, 10, 15, 20, 30, 40, 50, and 60 min after the temperature shift.

We applied RIM-Finder to a list of 3’UTRS1 ranked according to their decay rates
[33]. The intuition is that an active stabilizer should occur more at the bottom of this
list, therefore being rank imbalanced, and vice versa for an active de-stabilizer. The
big advantage of using decay rates, is that the identified motifs must influence RNA
stability and not transcriptional rate. Table 2 shows the results of our search.

4.2 Stress and Cell-Cycle Related Motifs

Next, we applied RIM-Finder to pairs consisting of promoters and 3’UTRs, ranked ac-
cording to yeast stress expression data [6]. Very significant both RNA and DNA motifs
as well as combined phrases were discovered. The strongest are represented in Table
3. Some motifs, e.g: GGGGA (STRE), AAATTTT, and GATGAG, appear with only

1 We used the regions spanning 50bp downstream from the coding regions as 3’UTRS and those
spanning 200bp upstream as promoters. To retrieve these sequences we combined data de-
scribing the chromosomal location of the coding sequences with chromosomal sequences.
Both types of data were retrieved from the SGD database [23].
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Table 2. Decay rate correlated RNA motifs. ‘+’ represents a stabilizer; ‘-’ a de-stabilizer. For
Bonfferoni corrected p-values, entries of the table should be multiplied by 109

Motif’s Sequence log(mHG) log(Student-t p-value) Hypothesized
Function

UGUNUANUA -13 -7 -
GUSGUAW -10 -7 +

small variations in most stress conditions. STRE is the well known multi-stress re-
sponsive element in yeast. Together with AAATTTT it has been reported, by previous
studies, to be significantly correlated with expression or have such very close variant
in cell cycle [24, 16], and in amino acid starvation [12]. GATGAG was also reported
before to be significantly correlated with expression or have such very close variant in
cell cycle [16] and in amino acid starvation [12]. The fact that these 3 motifs are signif-
icant in many different stress conditions derives us to hypothesize that they act as multi
stress responsive elements, a hypothesis which is further strengthened by the fact that
STRE has been empirically confirmed to induce expression under multi stress condi-
tions [11, 22]. Moreover, GATGAG and AAATTTT have been shown to co-occur in a
significantly high number of promoters in the S.cerevisiae, primarily in the promoters
of genes involved in rRNA transcription and processing [27].

Since in yeast most of the transcription regulation occurs in the promoter areas, the
RNA motifs discovered in the 3’UTRs are very likely to influence RNA stability. The
RNA motif UGUNUANUA, which was found to be significantly correlated with decay
rates, seems to have close variants which are significantly correlated with expression
at several stress conditions. The fact that the same motif is discovered in several dif-
ferent experiments, strengthens our hypothesis regarding its effect in controlling RNA
degradation.

Table 3 also contains significant phrases consisting of both DNA and RNA motifs.
In most of these cases, the single motifs in the phrase would not be detected, due to
insufficient statistical significance. For example, the phrase AGGG OR GTCNT is sig-
nificant in heat-shock. However, GTCNT by itself gets a mHG score of only -3. There-
fore, the increased flexibility of mixed phrases enables the discovery of more significant
candidates.

We also applied RIM-FINDER to 18 lists of 3’UTRs each ranked according to
expression at a different time point of the cell cycle [28]; several statistically signifi-
cant motifs were discovered (data not shown). Moreover, when we calculated the mHG
scores of motifs that were significant in one of the lists in all the other lists as well,
we identified motifs that seem to be active at a limited number of time points, as re-
flected by their mHGs. These motifs seem to propel cell cycle by being a checkpoints
between stages. For example, GTTGTTAC represented in Figure 1 has a mHG peak
of 10−25 exactly at 49 minutes and therefore, seems to be important in controlling the
cell transition from G2 to Miosis. This motif might bind a cyclin that acts by regulating
degradation. Cyclins are proteins that are known to propel the cell cycle by transcrip-
tional control and are active only at time points between stages. Our findings suggest
that cyclins might propel the cell cycle also by controlling degradation.
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Table 3. Single Motifs and Phrases influencing cellular mRNA levels under different environ-
mental stress conditions. ‘+’ represents a positive effect on mRNA levels and ‘-’ indicates the
opposite. For Bonfferoni corrected p-values, entries of the table should be multiplied by 1011

Student-t Hypothesized
Stress Motif Type Motif’s Sequence log(mHG) log(p-value) Function
Heat Shock DNA MGATGAG -57 -50 -
5 min. DNA AAATTTT -43 -48 -

DNA CTCATCK -33 -31 -
DNA RGGGG -27 -29 +
RNA UGUAUANUA -15 -14 -
RNA GUAYAWU -11 -14 -
RNA UUYUNSC -10 -5 +
Phrase DNA motif AGGG or RNA motif GUCNU -13 -8 +
phrase DNA motif CGNGG or RNA motif UUUUU -12 -9 +

Sorbitol Shock DNA AAAATTT -65 -63 -
10 min. DNA MSATGAG -34 -38 -

DNA SKCATCG -24 -28 -
DNA WRGGG -20 -22 -
RNA UGUAUANUA -11 -13 -
phrase CCCTT DNA motif or UUUNU RNA motif -12 -10 -

Amino Acid DNA AAATTTY -38 -23 -
Starvation 60 min. DNA YRTATAA -27 -19 +

DNA CGATGMS -21 -16 -
DNA TGAAWARA -19 -5 -
DNA YNNKNC -19 -14 -
RNA UCUAUNACA -15 -12 +
RNA GUUGGANUA -14 -15 -
RNA GNUGGUAUG -13 -11 -
RNA CAUUMYG -12 -9 +
RNA UGGKUGG -12 -12 +
phrase GNGGA DNA motif or TNTTT RNA motif -10 -9 +

Diamide Shock DNA AAAATTT -73 -63 -
10 min. DNA MGATGAG -72 -70 -

DNA CTCATCK -43 -38 -
DNA GCGMTS -29 -23 -
DNA RGGGR -28 -28 +
RNA UNNNUAUAU -12 -5 +
RNA UNYWUNU -11 -4 +
phrase ANGGG DNA motif or UU CA RNA motif -13 -10 +

4.3 Saccharomyces Cerevisiae Mutants and Related TFBSs

Finally, we applied RIM-FINDER to promoters ranked according to expression of dif-
ferent mutants or of cells constituently over-expressing a certain gene. We sought to
identify the TFBSs of the related TF’s as significant. The strongest motifs discovered,
for each such experiment are described by Table 4.

GCN4 and STE12 are both positive regulators of transcription in yeast. We found
close variants of their known binding sites in the list of the 8 strongest motifs discovered
in their mutants: TGASTMA which represents a subset of TGANT, the binding site of
GCN4, was found as most significant in GCN4 mutants; while, TGMAACR which
includes TGAAACA, the known binding site of STE12, was found to be the 8th most
significant motif in STE12 mutants. Moreover, as expected, both these motifs were
over-represented at the bottom of the expression rank list.

MSN2 induces transcription in yeast, while ROX1 represses it. In MSN2 over-
expressing cells we found CCCCT, the compliment sequence of STRE, the known
binding site of MSN2, as the fifth strongest motif. Moreover, as expected, CCCCT
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Fig. 1. GTTGTTAC a cell-cycle propeling motif. Stages of the S.cerevisiae cell-cycle: M/G1: 0-
14 mins and 63-77 mins, G1: 14-21 mins and 77-91 mins, S: 21-42 mins and 91-105 mins, G2:
42-49 mins, and M: 49-63 mins

Table 4. Motifs that influence gene expression in yeast mutants. The motifs similar to the binding
sites of the mutated proteins are marked by *. ‘+’ represents a transcription enhancing influence,
while, ‘-’ a repression. For Bonfferoni corrected p-values, entries of the table should be multiplied
by 1011

Mutant Motif Sequence log(mHG). log(Student-t p-value) Hypothesized Function
GCN4 mutants TGASTMA* -29 -50 -
grown in complete TATAWAW -27 -10 -
medium [32]
STE12 mutants YNNKNC -23 -31 +
grown in complete GGAKTCC -19 -21 -
medium compare CCTYGAS -16 -12 -
to WT cells GSRAGCT -16 -12 +
grown in the same TAATAGG -15 -18 -
medium [32] WMAG -15 -12 +

GATMMTG -13 -8 -
TGMAACR* -13 -13 -
YTNNYT -13 -10 +

ROX1 overexpressing ACAATR -30 -28 -
cells grown in ATTGTY* -21 -23 -
complete medium ANTKKTT -13 -12 -
compare to WT
grown in the same
medium [5]
MSN2 overexpressing MNGGRG -25 -21 +
cells grown in CCCST* -19 -14 +
complete medium MNCCCST* -19 -18 +
compare to WT SGGGNNS* -19 -19 +
grown in the same CCCCT* -17 -19 +
medium[6] ATATAAR -17 -10 +

was over-represented in the top of the expression rank list. In ROX1 mutants we found
a variant of ROX1 binding site: ATTGTY which is close to YYNATTGTTY as the sec-
ond strongest motif. This motif was over-represented in the bottom of the expression
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ranked list. These findings are consistent with our expectations: since MSN2 is an en-
hancer, in the MSN2 over-expressing cells we expect the genes regulated by MSN2 to
be over-expressed thereby making STRE over-represented in the highly expressed pro-
moters; on the flip side, since ROX1 is a repressor, in the ROX1 over-expressing cells
we expect the genes regulated by ROX1 to be under-expressed, thereby making ROX1
binding site over-represented in the low expression promoters.

5 Summary and Discussion

We have presented a new framework for discovering motifs that are significant with
respect to a single gene expression measurement assay or to any other ranked list of
genes. We evaluate motifs using a Student-t as well as a non-parametric model. We
assign p-values for denser occurrence at either end of such lists. Our approach guaran-
tees the discovery of the most significant degenerate motifs, an advantage over previous
methods such as REDUCER or MOTIF-REGRESSOR.

We also applied our methods to RNA decay rates to produce motifs that may be
active in regulating degradations. In particular, we found a RNA motif that seems to
be a checkpoint between cell-cycle stages. Thus, we provide evidence that cell-cycle is
partly propelled by controlling degradation rates.
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Appendix

A Computational Complexity

In order to identify new active TF binding sites, we seek motifs with significant mHG.
In this section we prove that the problem involved in this task is NP-complete. We do so
by showing that the decision version of this problem, the RANK IMBALANCED MO-
TIFS, is also NP-complete. We start by introducing some notations following Linhart
and Shamir [8].

Let Σ denote a finite fixed alphabet. In the case of DNA sequences, Σ =
{A, C, G, T}. A degenerate motif is a string P with several possible characters at each
position, i.e., P = p1p2 . . . pk, where pi ⊆ Σ (a motif over the IUPAC alphabet is any
degenerate motif over {A, C, G, T}). A string S = s1s2 . . . sl, si ∈ Σ matches the de-
generate motif P , if it contains a sub-string that can be extracted from P by selecting a
character at each position, i.e. ∃j, 0 ≤ j ≤ l− k such that ∀i, 1 ≤ i ≤ k, sj+i ∈ pi. For
example, the motif P ∗ = {A}{C, G}{A, T, G} matches the string TGAGAGTC start-
ing from the third position. The degeneracy of P is d(P ) =

∏k
i=1 |pi|. For example,

d(P ∗) = 6.
Recall that the functionality of a motif is related to the mHG of its corresponding

occurrence vector, given an expression ranked list of promoters. For a degenerate motif
this vector is simply calculated by replacing strings that match the motif by ‘+1’ and
the others by ‘-1’.

Therefore, the computational problem of discovering new TF-binding sites, is re-
lated to the following decision problem.

PROBLEM1 (RANK IMBALANCED MOTIFS (RIMS)) Given a ranked set of n
strings, R, over an alphabet Σ, integers l, d and a constant p; is there a degenerate
motif P of length l, such that d(P ) ≥ d and such that it’s corresponding vector with
respect to R, has a mHG ≤ p

THEOREM RIMS is NP-complete for |Σ| ≥ 3. We show this by showing a reduction
from the Set-Cover problem, since we could not find any simple reduction from any of
the 3 basic NP-Complete problems represented by Linhart and Shamir [8].
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However, two special cases where the problem is solvable in polynomial time,
should be pointed out. The first is where d = 1, and where all the possible solutions
are sub-strings of the data. The second is where the motif length (l) is constant, and
therefore, the number of possible solutions is also constant being 2|Σ|l . In that case,
one can solve the problem in time linear in the size of the data, by calculating the score
of each of the motifs.

A.1 Reduction from Set-Cover

We use the vector representation of the set cover problem: consider a set of subsets
{s1, s2 . . . sn} of the universal set U = {1, 2, . . .m}. Each subset is represented by a
vector of length m, and the ith cell of Vj equals 1 iff i ∈ sj and 0 otherwise. We seek
the smallest subset T , of vectors, such that each position between 1 to m is covered by
at least one of the vectors in T . In the decision version we want to determine whether
such cover of cardinality k exists.

1. Let Σ = {0, 1, 3}.
2. Let M = v1 . . . vn be a matrix, whose columns are the given vectors of the set-

cover problem.
3. Let α be a sequence consisting of all the rows in M chained together, with the

symbol 3 between them.
4. Let γ = 30n+23 ◦ α ◦ 30n and β = γ ◦ 3.
5. Let R = {β} ∪ {γ} and let β be ranked before γ in R.
6. Set l=n+2.
7. Set d = 4 · 3(n−k)

8. Set p = 0.5

A.2 Correctness of the Reduction

We now show, that there is a k cover iff there is a motif P of length l and d(P ) ≥ d
with score smaller than 1. The correctness is based on the fact that if v = (+, +), its
mHG is 1. While, if v = (+,−) it’s mHG is 0.5.

The first direction: Given a k cover, P is the motif of length n + 2 starting and
ending with 〈3, 1〉 and having 0s in the positions corresponding to the cover and 〈0, 1, 3〉
elsewhere. This motif occurs in β but not in γ (it occurs in 30n3 and does not occur in
α) by construction.

The second direction: assuming that a motif of length n + 2, and degeneracy ≥ d
got scores of 0.5. Then, it must occur in β in 30n3 and it must start and end with 〈3〉 or
〈3, 1〉, otherwise it would occur in 30n+23 and therefore, in γ. Since it has a degeneracy
≥ 4 · 3(n−k) it cannot have more than k zeros. Moreover, it is easy to show that since
this motif does not occur in α its zeros must correspond to a k cover.
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Abstract. The identification of regulatory elements as over-represented motifs
in the promoters of potentially co-regulated genes is an important and challeng-
ing problem in computational biology. Although many motif detection programs
have been developed so far, they still seem to be immature practically. In particu-
lar the choice of tunable parameters is often critical to success. Thus knowledge
regarding which parameter settings are most appropriate for various types of tar-
get motifs is invaluable, but unfortunately has been scarce. In this paper, we report
our parameter landscape analysis of two widely-used programs (the Gibbs Sam-
pler (GS) and MEME). Our results show that GS is relatively sensitive to the
changes of some parameter values while MEME is more stable. We present rec-
ommended parameter settings for GS optimized for four different motif lengths.
Thus, running GS four times with these settings should significantly decrease the
risk of overlooking subtle motifs.

1 Introduction

One of the central challenges in modern biology is to elucidate the gene regulatory
networks of various organisms. To this end, a large amount of systematic gene expres-
sion data is accumulating. A typical way to explore such data is to find potentially
co-regulated genes, i.e., genes that are regulated by a common transcription factor, by
clustering genes showing similar expression patterns [1]. The next step is to find po-
tential transcription factor-binding sites (cis-elements) from their upstream sequences
(promoters) as over-represented motifs because the found motifs can be validated ex-
perimentally and because these motifs are also useful for finding other co-regulated
genes [2]. However, finding such motifs is far from a trivial task. One difficulty is due
to the fact that motif occurrences exhibit considerable variety, typically only partially
matching the consensus pattern for the motif they belong to. Another difficulty is that
there are many patterns in the genome, for example various repetitive elements, which
are not transcription factor binding sites – and thus are a source of false positives for
this task.

Although many motif finding programs have been constructed so far [3–12] the
problem has not been satisfactory solved in a practical sense, especially for the anal-
ysis of higher eukaryotic promoters. To overcome this difficulty, what is needed first
is a precise assessment of the capability of existing algorithms in various situations.
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Such attempts have been extensively done by Pevzner’s group [13]. In their first at-
tempt, artificial motifs of a fixed length with a fixed number of mutations were embed-
ded in a set of random DNA sequences with a fixed length for input sequences (the
FM model; [13]). They tabulated the maximum number of tolerated mutations for each
motif length. Later, real motifs were embedded for a more realistic assessment [14].
One of their conclusion for users was “use all available programs” because the rela-
tive superiority of each program varies with various situations[14]. Not only are several
motif discovery programs available, but most of them have tunable parameters, which
can significantly affect their performance. The Melina program alleviates this problem
somewhat by conveniently allowing users to compare the results of four programs ap-
plied to the same data with various parameter settings [15]. Still, end-users need some
kind of guidance to choose the right parameter values for their data but such guidance
has not been readily available. In this paper we use Pevzner’s scheme to conduct a para-
metric analysis of two easily-obtainable and widely used programs, the Gibbs sampler
(GS) [5] and MEME [4, 6, 7]. In addition to providing a practical resource for end-users
we believe our results may give valuable hints to algorithm designers as well.

2 Methods

2.1 Dataset Construction

To analyze the distribution of mutations and lengths of actual motifs, we randomly se-
lected 200 groups of known eukaryotic motifs from the TRANSFAC database [16] and
104 groups of prokaryotic motifs from the DBTBS database [17]. For our experiments,
we generated datasets analogous to those used in previous evaluations [13]. Motifs with
lengths between 8 and 20 nucleotides were incorporated in a randomly generated back-
ground (1/4 probability of each nucleotide). The number of background sequences in
each dataset was initially 30 and their sequence length was set to 600 nucleotides. Mis-
matches in motifs were inserted according to the original FM model [13]. We also used
their result on the minimum tolerated number of mismatches (Table 1). We call their
mismatch level “level one” and define “level two” as one more mismatch than level
one for each motif length. Since it is quite common in practice that some of the input
sequences do not contain motifs, we also constructed datasets by adding 30, 60 and 90
random sequences to the above 30 sequences.

Table 1. Motifs with corresponding number of mismatches used for the datasets construction.

motif 8 9 10 11 12 13 14 15 16 17 18 19 20
mismatches (level 1) 1 1 1 2 2 3 3 3 4 4 5 5 6
mismatches (level 2) 2 2 2 3 3 4 4 4 5 5 6 6 7

2.2 Evaluation of Elucidation Performance (EP)

We evaluated the program’s sensitivity (Sn.) and specificity (Sp.), which are shown in
the formulas below:
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Sn. = TP/(TP + FN) (1)

Sp. = TP/(TP + FP ) (2)

where TP (True Positive) corresponds to the number of perfectly found inserted motifs
and of reported segments that have the same or lower number of mismatches; FN (False
Negative) refers to the missed incorporated motifs. And FP (False Positive) corresponds
to the reported segments which are not true positives. We obtained our estimates for
sensitivity and specificity by averaging over 15 randomly generated datasets for each
motif length and mismatch level. When optimizing parameters, we choose to use the
product of sensitivity and specificity as the quantatity to maximize.

3 Results

3.1 Range of Mismatches and Lengths in Actual Motifs

When looking for biological motifs, we need to know something about their general
features. For this purpose, we investigated 200 groups of eukaryotic motifs stored in the
TRANSFAC [16] database and 104 groups from DBTBS (DataBase of Transcription
regulation in Bacillus subtilis) [17]. It was determined that 99% of biological motifs
have length between 5 and 20 nucleotides and mismatch levels from 0 to 50%, as can be
seen in Fig. 1 below. Note, that this general tendency is conserved between eukaryotes
and prokaryotes.

Fig. 1. Distribution of motif characteristics from various genomes. The black dots represent
TRANSFAC data and the gray circles correspond to the motifs obtained from DBTBS. The size
of the black dots and gray circles represents the number of motis with the same length and number
of mismatches.
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3.2 Selection of Important Parameters

Since there are many adjustable parameters for each program, it is impossible to test all
combinations of their settings. Thus, we selected 4 parameters that severely influenced
the performance of GS in an independent test. They are shown in Table 2 with their
default values and the minimum and maximum values used in this study. A total of
24000 combinations of parameter values were tested.

Table 2. Parameters used for the optimization procedure. Their names, defaults, minimum and
maximum values tested, and increments for each step are listed.

Parameters Default MIN MAX STEP
Number of motifs (n) [18] 10 5 100 5
Plateau period (c) [19] 20 10 200 10
Number of seeds (t) [20] 10 5 50 5
Maximum number of iterations
per each seed (m) [21] 500 500 3000 500

In contrast, in our preliminary testing of MEME’s parameters that do not require a
priori knowledge of the motifs, we could not identify any crucial parameters. The only
exception was that checking one modal parameter “do not adjust motif width using
multiple alignment” slightly improved the algorithm’s performance in its non-default
‘nomatrim’ mode, compared with the default ‘trimming’ mode (see 3.4). We also must
mention here that MEME was used in its ‘-zoops’ mode, in which zero or one motifs
occurences are expected per sequence.

3.3 Results of Gibbs Sampler

The results obtained in the default (D) and under the best parameter values among the
inspected ones (ND) for the motifs with “level one” mismatches are shown in Table 3.
From Table 3 we can observe that the sensitivity for all motifs greatly increased, and
in the case of 5 motifs it has become 100%. Even when 50% of sequences contain no
motif occurrences, for 8 out of 13 motifs the sensitivity remains above 50%, and it is
still high for some of the motifs after 60 and 90 sequences without motifs were included
in the dataset. Although the values of specificities (not shown) were reasonably high for
almost all optimized cases.

Motifs shown in Table 3 were considered to be at the limit of motif discovery pro-
grams’ capabilities, but we tried to extend the range of GS’s possibilities by experi-
menting on motifs, with “level two” mismatches. The results of our calculations on the
datasets with these strongly corrupted motifs are shown in Table 4 below. The results in
Table 4 proved that GS is capable of finding subtle motifs. It was expected to be beyond
the power of the program in the default mode to extract such weak motifs, for exam-
ple, 12/3, 14/4, 15/4 (motif length/number of mismatches) from the 600 nucleotides
sequence, but when the appropriate parameters were applied, more than 50% of these
motifs were correctly identified. A sensitivity of 28-43% was obtained for four motifs
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Table 3. The sensitivity of GS for each mo-
tif with “level one” mismatches is shown.
The first column shows the sensitivity in
default mode (D). The second and follow-
ing columns show the sensitivity in the
non-default, i.e. optimized parameter mode
(ND). The first two columns correspond to
sensitivity averaged over datasets with a
planted motif occurence in each sequence,
while the columns labeled “+30”, “+60”
and “+90” correspond to the non-default
mode sensitivity averaged over datasets
which include 30, 60 and 90 extra se-
quences without planted motif occurences.

Table 4. The sensitivity of GS for each mo-
tif with “level two” mismatches is shown.
The first column shows the sensitivity in
default mode (D). The second and follow-
ing columns show the sensitivity in the
non-default, i.e. optimized parameter mode
(ND). The first two columns correspond to
sensitivity averaged over datasets with a
planted motif occurence in each sequence,
while the columns labeled “+30”, “+60”
and “+90” correspond to the non-default
mode sensitivity averaged over datasets
which include 30, 60 and 90 extra se-
quences without planted motif occurences.

types: 10/2, 16/5, 17/5 and 19/6, while the sensitivity of the remaining motif types was
quite low.

We also investigated the sensitivity/specificity for the motifs longer than 20 nu-
cleotides. We noticed that with the increase of motif length a higher proportion of mis-
matches could be tolerated. This is clearly seen when the records of 18/6 and 21/7 are
compared. They have the same mismatch level of 33.3%, but very different elucidation
performance.

Finally, we grouped the motifs by their lengths and the parameter values found to be
the most suitable for them. These parameters showed very similar values for the motifs
in the same group, and motif groups and their values are shown in Table 5 below.
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Table 5. Parameters found to be the most suitable for the elucidation of correspondent groups of
motifs. Motif length with the respective number of mismatches is shown as, for example, 8-9/1-2
in the first column of the table. In the last column “Sn. increase” represents the interval between
minimum and maximum increase of the sensitivity for the respective motif groups.

motif group #motifs(n) plateau(c) seeds(t) iterations(m) “Sn. increase”
default 10 20 10 500
“short“
8-9/1-2 40-60 60-80 20 1000 3-46%

“medium“
10-15/1-4 80-100 80-100 30 1500 0-84%

“medium-long“
16-20/4-7 40-60 40 20-30 1500 3-62%

“long“
21-30/7-12 40-60 20 20-30 1500 45-71%

End-users can use Table 5 to estimate how much the elucidation performance may
increase over the default setting for different motif types. We believe these settings will
generally be more useful to users than the default settings.

3.4 Results of MEME

Compared to the results of GS, shown in Table 3, MEME has a much higher sensi-
tivity for well-conserved conserved motifs or motifs with “level one” mismatches in
the default setting. As shown in Table 6, the use of ‘nomatrim’ instead of the default
‘trimming’ mode showed a slight increase of 10% in several cases. After 30 sequences
without motifs were added to the 30 sequences dataset with motifs, the sensitivity de-
creased twice or more for the most motifs.

The results in Table 7 demonstrate that our suggestion to extract subtle motifs using
‘nomatrim’ mode was correct. Although the general level of MEME’s capability to
elucidate strongly corrupted motifs is low, we can observe a bigger difference between
these two modes, compared to the results demonstrated in Table 6.

4 Discussion

We aimed at improving the success rate of finding various motifs with GS and MEME.
To this end, the programs were tested with various combinations of parameters. GS
showed a higher dependence on parameter settings. Indeed, the sensitivity for weak
motifs, which were considered to be beyond the limit of GS tolerance, almost doubled.
Even in the presence of 30 sequences without motifs, the sensitivity remained higher
than 50% for 8 of 13 motifs.

In our experiments with strongly corrupted motifs 3 of 13 motifs showed the sen-
sitivity higher than 50% (12/3, 14/4, 15/4). It has been considered impossible to find
such motifs in length 600 nucleotides sequence until now. Three other motifs (16/5,
17/5, 19/6) showed a sensitivity higher than 35%. We determined that for a constant
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Table 6. Comparison of the sensitivity of
MEME for motifs with “level one” mis-
matches in the default (D: ‘trimming’) and
non-default (ND: ‘nomatrim’) parameter
settings. “+30”, “+60”, “+90” corresponds
to the number of sequences without the mo-
tifs in the dataset.

Table 7. Comparison of the sensitivity of
MEME for the motifs with “level two”
mismatches in the default (D: ‘trimming’)
and non-default (ND: ‘nomatrim’) param-
eter settings. “+30”, “+60”, “+90” corre-
sponds to the number of sequences without
the motif in the dataset.

mismatch proportion longer motifs are easier to find. For example the 18/6 and 21/7
motifs, which both have a 33.3% mismatch level have sensitivities of 3% and 71%,
respectively. For a fixed mismatch level significantly below 75% we would expect this
to be the case, since the overall information content of the motif increases with motif
length.

Comparing to GS, MEME could identify only a few of the subtle motifs. The best re-
sults were 15/4 and 22/7 with the correspondent sensitivities of 39% and 55%. We didn’t
find any great difference between default and non-default results for well-conserved
motifs, but the performance become slightly better for subtle motifs when ‘nomatrim’
(non-default) setting is applied. For MEME we found that when increasing sequences
length by 200 nucleotides, the sensitivity goes down to about of 30% (data not shown).
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We found that the elucidation performance of GS strongly depends on the appro-
priate choice of parameters, but MEME does not show such a tendency, and generally
should be applied in the default mode. We should mention that because we did not use a
separate training set to optimize the parameters our estimates of sensitivity (and speci-
ficity) may be somewhat high for GS. Also it is possible that in some cases in which
the programs failed to find our intended motif, they found other patterns of similar or
greater strength. We recognize this interesting possibility but have not systematically
investigated it at this point. As for computational resources, we have not reported the
specific execution times here but both programs were generally sufficiently fast (sec-
onds to a few minutes) with GS generally being faster than MEME.

In conclusion, we have performed a parametric analysis with the popular MEME
and GS programs. In particular, we show that appropriate settings can greatly improve
the performance of GS over its default settings. We classified motifs in several groups
based on their length and assigned them parameters values suitable for effective elu-
cidation. In addition to providing hints to algorithm designers, our results should be
immediately helpful to end-users.
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Abstract. Resolving the co-regulation relationships between genes is a major
step toward understanding the underlying topology and dynamics of gene net-
works. Although co-expression of genes does not directly imply their co-regu-
lation, model-based approaches coupled with the availability of large-scale gene
expression data can help associate expression patterns with features in their cis-
regions. Inspired by studies of transcriptional regulation in sea-urchin, here we
report on preliminary validation of the following simple model for transcriptional
regulation in yeast: the same Cis-Regulatory Modules (CRMs) in the cis-regions
of different genes give rise to very similar functional events in the time-course ex-
pression profiles of those genes. We use a modified version of a prior algorithm
for decomposing time-course gene expression patterns into functional events. To
capture and reason about shared CRMs we introduce an order relationship, or a
Regulation Hierarchy on the genes. When tested on actual time-course gene ex-
pression data of yeast preliminary results indicate 50% - 71% matches, of high
confidence, between our derived and known cis-region regulation hierarchies.
This hierarchy structure yields practical predictions when used with other type
of genomic data, e.g. location of TF-DNA interactions.

1 Introduction

Gene expression is regulated during transcription by combinations of trans-factors (TFs)
that bind to corresponding sites in the genes’ cis-regions. The differential expression of
any gene under different experimental conditions is due to the particular regimen (i.e.
abundances) of those TFs. Exactly how the cis-regions process the input protein con-
centration signals is a key question in functional genomics. Methods for grouping genes
by similarity of expression profiles across multiple experiments have been partially suc-
cessful in identifying functionally related genes [1]. But since co-expression does not
imply co-regulation in general such methods have been limited to identification of gross
functional features and categories.

The next step is to incorporate known biological facts into computational models
of regulation. Such model-based approaches coupled with the availability of large-scale
gene expression data can help associate expression patterns with features in their cis-

E. Eskin, C. Workman (Eds.): RECOMB 2004 Ws on Regulatory Genomics, LNBI 3318, pp. 88–97, 2005.
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Fig. 1. On the left are given cis-regions for four genes and the cis-elements in them. On the
right hand side are the corresponding gene expression signals. a, b, and c are the modules of
cis-elements and their effects on the expression. The dashed boxes indicate expression events for
which there might be multiple causes.

regions, and thus elucidate co-regulation. The choice of a model then becomes an im-
portant issue, especially since there are very few good qualitative models out there and
no complete quantitative model of general transcriptional regulation, to the best of our
knowledge.

Perhaps one of the best qualitative descriptions of the inner-workings of cis-regions
(CRs) has come out of the work of Eric Davidson [2] and colleagues on sea urchin.
They have demonstrated that single or groups of TF binding sites in cis-regions behave
as functional units of the regulatory systems, called Cis Regulatory Modules, CRMs.
Davidson and colleagues found out, using many genes in the Sea Urchin organism [3],
that the function of their cis-regions, i.e. gene expression signals, can be decomposed
into simpler functions of their sub-regions, down to the functions of the individual
CRMs. The CRMs, then, can be thought of as the building blocks or transcriptional
regulation, each having identifiable functional manifestation, i.e. gene expression pat-
tern. Thus the CRM identification is extremely important.

Ideally, one would like to formalize their model and use it to resolve the complexity
of cis-regions from large-scale functional genomics data, like gene expression microar-
ray data for example. As a prelude to such a formalization, in this paper we sought to
test whether the modularity parallel between cis-regions and gene expression can be
detected from available large-scale functional genomics data. Our working hypothesis
is that shared events, or sub-signals, of gene expression signals are due to modules of
shared binding sites in the cis-regions of the genes. Fig. 1 gives an illustration. There,
the sub-signals a, b and c are consequences of the actions of the corresponding modules
in the cis-regions.

Before proceeding, we need a somewhat formalized notion of cis-modularity. Draw-
ing from the discussion and illustration above we come up with the following rules:

1. CRMs are the smallest sets of binding sites which have distinguishable function;
2. CRMs functions are manifested as sub-signal of the genes’ expression signals; and
3. Two or more modules on the same cis-region are responsible for expression regula-

tion at different times or places in the organism; otherwise they would be considered
a single module.
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In this work, to test our working hypothesis above,

– We propose identifying expression events by decomposing gene expression signals
into Putative Elementary Expression Events (PEEEs) using a modification of our
previous approach [4], which was developed for elucidating regulatory relation-
ships between pairs of genes from time-course expression data.

– We introduce the Regulation Hierarchy structure as a representation of co-regula-
tion between genes. The Regulation Hierarchy is a directed acyclic graph, in which
genes are partially ordered based on shared cis-modules. In such a graph any two
nodes with a common ancestor are co-regulated. Such a hierarchy graph is useful
independently as a structure for study of functional elements of gene regulation. As
upper and lower bound approximations of the Regulation Hierarchy we define two
other hierarchies, the Expression Hierarchy and the Transcription Factor Hierarchy
which can be obtained from existing data sets.

– We compare the Expression and Transcription Factor Hierarchies obtained from
two publicly available data sets: a time-series, whole-genome, expression data of
yeast [5], and a genome-wide location data of TF-DNA binding in yeast [6]. Our
results suggest strong correlation between sub-elements of gene expression curves
and cis-modules of binding sites: we observed 50% - 71% of matching directed
edges between the two herarchies, compared to expected (between 1/6 and 1/8 of
that). By combining the predicted hierarchies we were able to discern basic expres-
sion signals and attribute some to well known TF modules.

The paper is organized as follows. Next we talk about related work on effects of
modularity of the cis-regions on gene expression, and decomposition of expression sig-
nals into basic curves. In Section 2.1 we review and expand a previous method for iden-
tifying elementary expression events. The regulation hierarchies are defined in Sect. 2.2,
and we show how to construct them from real data in Sect. 3. We report the results of
our preliminary studies in Section 4. In the last section we summarize the findings and
describe our current and future directions in both expanding the model and utilizing the
hierarchy graphs in different ways.

1.1 Co-regulation and Co-expression

Our current work is novel in that it proposes a model for co-regulation based on at-
tributing identifiable events in expression signals to cis-modules. We also describe an
original structure, the Regulation Hierarchy.

Differentiating between co-expressed and co-regulated genes is important in par-
ticular for gene network inference. In previous work Pilpel et al. proposed [7] and
later improved [8] methods to identify clusters of genes which are co-regulated and
co-expressed at the same time. They achieved this by scoring co-expression for genes
which share overrepresented elements in the upstream regions. Although our goal is
seemingly the same, since we are also attempting to resolve co-regulation from co-
expression, here we are interested in resolving co-regulation from expression data,
based on the shared events model. We don’t aim to resolve actual binding sites in this
paper; instead we are after the co-regulation hierarchy, for which we only use time-
course expression data. We discuss later some future uses for the Regulation Hierarchy.
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A few studies recently have focused on identifying modules of genes by considering
variety of available data: gene expression, sequence, and TF-DNA location. The work-
ing definition for a module in them varies between a group of strongly co-expressed
genes in a subset of experiments to a group of genes co-regulated by the same factors
and sharing a function [9]. In both extremes though the definition of a module is some-
what fuzzy as genes can be taken in or out of it while the module doesn’t change. Our
definition of a cis-module, a variant of that of Davidson [2], is a group of transcription
factors that has an indivisible functional effect on transcription; in other words there is
a sense of minimality or atomicity to it. Time-course expression data cannot predict the
actual content of a cis-module; other data is needed for that (gene knockout expression
data can also be used).

The small number of different patterns evident in time-course gene expression data,
especially the cycling genes set by Spellman et al. [5], has motivated several studies
into evaluating the possibility of decomposing the expression signals into a combina-
tion of a few basic signals. In particular the study by Holter et al. [10] identifies a small
number of characteristic modes in microarray time-series data [5], as discovered by Sin-
gular Value Decomposition. Such studies although informative about the range of the
transcriptional signals under specific conditions, and arguably successful in correlating
functional gene categories with specific modes of regulation, do not address the issue
of co-regulation.

2 Elementary Expression Events and Regulation Hierarchies

In this section we formalize the notion of shared features in the genes expression sig-
nals by introducing Putative Elementary Expression Events (PEEEs). The intuition, and
a simplification of our working hypothesis, is that shared PEEEs correspond to shared
CRMs. To reason about shared PEEEs and their relationship to shared CRMs in the
corresponding cis-regions we introduce a graph theoretic structure, the Regulation Hi-
erarchy, and a few derivatives.

2.1 Expression Events

PEEEs are functionally relevant parts of the expression signals and, we postulate, are
functional effects of CRMs. For our purposes, these are parts of the expression signals
that either increase or decrease. They are identified using a modified version of the edge
detection algorithm by Filkov et al. [4].

There, events were defined as biologically meaningful changes in expression with
time. In the ideal case, with no fluctuations in the signals, events would correspond to
monotonically increasing or decreasing smooth curves between local optima. Because
large-scale gene expression data is far from ideal, signals are smoothed out as follows.
Starting from the initial time point, and proceeding to the right iteratively, over the rest
of the time points, the events are identified, grown, and possibly merged, so long as the
expression change is in the same direction (i.e. increase or decrease) as the rest of the
event, with tolerances for default and random fluctuations in expression levels, as well
as with a biologically significant cap on the maximum length of an event. The original
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method uses one neighbor on both sides of time points to label them local minima, local
maxima and in-between. But edges can be missed that way because of noise in the data.
We improve on this by using two neighbors on both sides of a local optimum to label
the points more accurately.

The result is a list of putative events, or PEEEs, for each gene. Each event is a run
of points that either increases or decreases in expression. We showed previously [4] that
these lists of events can be used to identify gene regulatory relationships between genes
with greater fidelity than co-expression. In addition, the putative events lists for pairs of
genes can be aligned to discover any shared events.

2.2 Regulation Hierarchy Graphs

In our model of transcriptional regulation a gene’s expression is completely determined
by the modules in its cis-region. The idea behind the Regulation Hierarchy is to build a
structure that captures the shared regulation information between genes. The Regulation
Hierarchy is meant to be an invariant view of regulation from both the sequence and
gene expression, and a representation of both.

The Regulation Hierarchy (RH) is defined as a directed graph, Gr = (V, Er) over
the genes in an organism, V = {g1, g2, . . . , gn}, where there is an edge between two
nodes if the set of CRMs regulating one gene is a subset of the set of the CRMs reg-
ulating the other, and the direction of the edge is from the smaller toward the larger
set of regulators. That is, if Mod(x) is the set of modules regulating node x, then for
every pair of genes (nodes) i and j, (i, j) ∈ Er if Mod(i) ⊆ Mod(j). If i and j share
CRMs but none dominates the other, then neither (i, j) ∈ Er nor (j, i) ∈ Er. For
example, there is only one such relationship between the genes in Fig. 1, and that is
Gene4 ≤ Gene3. The rest of the gene pairs don’t have order relationships although
they share regulators (and sub-signals).

We define the following two additional hierarchy graphs, which, in contrast to the
regulation hierarchy, can be obtained from existing data. First is the TF hierarchy
(TFH), defined as Gtf = (V, Etf ), where if Tf(x) is the set of transcription factors
that can bind to the cis-region of gene x then (i, j) ∈ Etf if Tf(i) ⊆ Tf(j). The
second hierarchy is the Expression Hierarchy (EH), defined as Ge = (V, Ee), where if
Peee(x) is the set of PEEEs present in the expression signal of gene x then (i, j) ∈ Ee

if Peee(i) ⊆ Peee(j).

Properties of the regulation hierarchies. The Expression and Transcription Factor
Hierarchies are, in a way, an upper and lower bound (respectively) on the edges in the
Regulation Hierarchy, because Ee ⊆ Er ⊆ Etf . We see that as follows.

First of all, Er ⊆ Etf . Namely, if (i, j) ∈ Er then Mod(i) ⊆ Mod(j), but that
implies Tf(i) ⊆ Tf(j) since modules are just sets of TFs. Hence, (i, j) ∈ Etf . Note
that these two hierarchies will not be equal in reality because there can be TFs binding
to a cis-region without having a functional effect on that gene’s expression.

Second, Ee ⊆ Er, because as we assumed in the CRM rules before, each modules
has an identifiable functional sub-component of the expression signal, and the modules’
functions are non-overlapping. Thus each PEEE corresponds to a module. Note that
these two hierarchies will not be equal in reality because not all modules’ functions are
identifiable from existing data.
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With ideal (but not necessarily complete) data, these three hierarchies would be
directed, and transitively closed graphs, where if (i, j) ∈ E and (j, k) ∈ E then (i, k) ∈
E. They would also be acyclic except for the trivial cycles which will happen between
two genes sharing exactly the same regulators.

Utility of the regulation hierarchies. From the RH one can readily answer if two
genes are co-regulated by looking up if they have the same ancestor. Also, with the RH
and the TFH one can explore TF modules, whereas from the RH and EH the basic
expression signals corresponding to modules can be found.

In addition, RH can be a powerful tool for building regulatory networks. Namely,
the RH establishes classes of co-regulated genes–information that can help bound the
in-degrees of nodes during inference.

In this paper we show how to obtain the Expression Hierarchy and the TF hierarchy,
and explore how well they coincide. Ideally, Ee ⊆ Etf . We use both to illustrate how
one can identify TF modules.

3 Constructing the Hierarchies from Existing Data

We used two separate data sets of yeast. The first is a time-course, genome-wide, gene
expression data, known as the Cell Cycling Genes data, from Spellman et al. [5] Al-
though somewhat dated, we used this data set because it is still one of the best time-
course expression data sets available, mostly because of the long length of the series (i.e.
number of measurements is large) as well as the sampling times (they are small enough
to capture the cell-cycling processes in yeast). The data set consists of four separate
time-series measurements of expression for each gene, totaling 76 measurements, for
about 6200 genes of yeast. We imputed the missing values using KNNimpute [11]. We
concatenated all the measurements and obtained a 76 dimensional, real-valued, vector
for each gene.

The second data set is the TF-DNA data by Lee et al. [6]. The set consists of 6200×
106 p-values indicating the confidence of binding for each of 106 TFs to all 6200 genes
of yeast. By selecting a confidence value for each gene one obtains a TF profile of
binding (i.e. a list of TFs that bind to the closest intergenic region to that gene). We
used p = 0.01 as the threshold.

The Cell-Cycling Genes data set does not have too many features, i.e. the expression
signals do not have many degrees of freedom as the conditions to which the genes were
exposed in that experiment were not diverse. Thus one needs to lower the dimensional-
ity of the expression matrix, since over 6000 signals present an overkill and will result
in a large number of spurious events identified. So, we clustered the data into a smaller
number of clusters which should all be sufficiently different and offer variety of sub-
signals. The genes’ expression vectors were clustered using average-link hierarchical
clustering with the Pearson’s correlation as the distance measure. The clustering goal
was indistiguishability of curves within clusters under visual observation. The resulting
87 clusters are the nodes in the hierarchy graphs.

For the Expression Hierarchy we created an average expression profile for each
cluster by averaging the expression vectors from the Cell Cycling genes data. We ran
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our modified edge detection algorithm to detect events (see Section 2.1). An event pro-
file was created for each gene, consisting of runs of points labeled as increasing or
decreasing. To identify common events pairs of profiles were overlapped and the events
matching in location and direction were counted. For the TF Hierarchy we created a reg-
ulation profile for each gene using the TF-DNA data. Then we calculated the overlap
score between two clusters, from the expression data clustering, as defined above.

3.1 Constructing EH and TFH

Real data of course is noisy. Thus, we had to allow for some fuzziness in the regulation
hierarchies. In addition, the data sets with which we worked were clusters of gene ex-
pression signals as opposed to individual signals. Thus each cluster contains a number
of co-expressed genes, whose curves are to us indistinguishable. Here we describe how
we derived the expression and TF hierarchies from noisy clusters of genes.

Expression hierarchy. The data used for the EH is time-course expression data (see
above) from which PEEEs have been identified for each gene. An edge was created
between two nodes based on the overlap score of their PEEE lists. The average of the
expression signals in a cluster was the representative signal for that cluster. Then the
PEEE list for that average was the PEEE list for that node.

We define the overlap score for edge (i, j) by using a combination of the following
two scores:

(i) Sij = |Peee(i) ∩ Peee(j)|, i.e number of common PEEEs present in the event
sets of both nodes;

(ii) Si−j = |Peee(i)| − |Peee(i) ∩ Peee(j)|, i.e. number of PEEEs present in node
i but not in j.

Then,

(i, j) ∈ Eeif Sij > Sij + Zeσ and Si−j

Sij
< 0.3 (1)

We considered an edge present if the overlap was Ze standard deviations more than
average. This z-score served as our threshold for the edges in Ee. To ensure the con-
tainment relationship but allow for noisy data we added the constraint that Si−j be less
than 30% of the overlap. In other words, for an edge (i, j) we allow for some PEEEs to
be in i but not in j. The 30% we determined to be a well balanced cap on such events.

TF hierarchy. The data used for the TFH was TF-DNA interaction location data (see
above). An edge (i, j) in the TFH graph was established by carefully evaluating the
overlapping and non-overlapping sets of TFs between nodes i and j. As the nodes are
clusters of genes, we counted the overlap between pairs within and between clusters.

An edge (i, j) is defined by using a combination of following three scores:

(i) A, inter-cluster overlap of TFs. The score is obtained by counting the number of
common TFs for all pairs formed by genes in cluster i and cluster j.

(ii) B, intra-cluster overlap of TFs. The score is obtained by counting the number of
common TFs for all pairs formed by genes in cluster i.
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(iii) C, intra-cluster overlap of TFs. The score is obtained by counting the number of
common TFs for all pairs formed by genes in cluster j.

Then,

(i, j) ∈ Etf if A > A + Ztfσ and B < C (2)

We considered an edge present if the TF overlap was Ztf standard deviations more than
average. To ensure the containment relationship we added the constraint that B be less
than C.

4 Preliminary Results

To test our model of regulation we compared the two resulting hierarchies, the EH and
TFH . In ideal conditions, Ee ⊆ Etf , i.e. all the edges in EH should be in TFH .

As a part of our preliminary studies we built several different EH and TFH , for
different values of the z-scores Ze and Ztf . We also generated random graphs on the 87
nodes by permuting the expression data and running the algorithms to identify PEEEs
and score them on this permuted data. The results for Zef > 0.5 and Zef > 1 are
shown in Fig. 2.

Several things are evident from the figure. First of all the edges in the Expression
Hierarchy correspond very well to the edges in the TF Hierarchy: with increasing Ze

we get up to 71% matches. The second observation is that the results are significant: the
random graphs have many fewer edges (down to about 10%) that match the TFH . So
we did in fact get most of the edges from the EH in TFH .

Ztf > 0.5 Ztf > 1

(a) (b)

Fig. 2. Comparing the inferred Expression Hierarchy to a known TF Hierarchy, at two different
thresholds of TF factor overlap Ztf > 0.5 (560 edges) and Ztf > 1 (290 edges). The total
number of edges in Ee, for 5 varying thresholds of overlap, together with the true positives and
the expected (random) matches is given. The correct predictions increase from 48% and 71%,
with the expected number decreasing to 1/6 of that (for Ztf > 0.5). In (b) although the statistical
significance of the results is better than in (a) the sensitivity is lowered.
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The number of edges in EH is about 10% to 20% of those in TFH . This was to be
expected as the genes were only exposed to a few different conditions during the Cell
Cycling Genes experiment, so the actual range of expression signals captured only a
small number of modules’ effects.

The resulting clusters and hierarchy graphs can be obtained from our Web site:
graphics.cs.ucdavis.edu/˜nyshah/Regulation.Herewe omit them for
space considerations and report on some initial observations. First of all the hierarchy
of the yeast genome is shallow with the longest paths being of length at most 5. This is
well in agreement with other studies [12].

Next we examined co-regulated nodes in the partially ordered graph by comparing
the TFs from the TF-DNA location data set. Note that each node is a cluster of genes.
The following are modules of TFs that were common to at least three genes between co-
regulated nodes. Together with the genes we give some annotation either from SGD [13]
or individual references. Some of the TFs in the modules are known to act together while
the others are not. More TF modules are available at our Web site.

Cluster 4 (12 genes) 4 regulated by FKH2, MCM1 and NDD1. MCM1 is a known
yeast cell cycle regulator during the M and M/G1 phases. FKH2 is involved in the
regulation of the SIC1 cluster, whose member genes are expressed in the M/G1 phase
of the yeast cell cycle, and are involved in mitotic exit [14]. NDD1 is a high-dosage
suppressor of cdc28-IN, essential for expression of a subset of late S phase specific
genes in yeast [15].

Cluster 6 (12 genes) 4 regulated by all of GAL4, GAT3, RGM1, YAP5. GAL4 is a
well known transcription factor for the GAL structural genes, which encode galactose
metabolic proteins. GAT3 (YLR013w) is a protein encoding GATA-family zinc finger
motifs, known transcription factors [16]. RGM1 is a putative transcriptional repressor
with proline-rich zinc fingers. YAP5 is a bZIP protein and a known transcription factor.

Cluster 13 (25 genes) 6 regulated by MBP1, SWI6. SWI6 is a transcription cofactor,
forms complexes with DNA-binding proteins Swi4p and Mbp1p to regulate transcrip-
tion at the G1/S transition. MBP1 is a cell-cycle regulating transcription factor.

5 Discussion and Directions

We presented here a model-based approach to elucidating co-regulation from time-
course gene expression measurements. We introduce the Regulation Hierarchy as a
structure that usefully summarizes transcriptional regulation, show how it relates to
two more practical structures, the expression and TF hierarchies, and approximate it
using gene expression data. Using publicly available data on gene expression and TF-
DNA binding in yeast we were able to get encouraging results supporting the utility of
the Regulation Hierarchy, and its derivation from expression data. We demonstrate one
particular use for the RH by combining it with the TF-DNA data and identifying TF
regulatory modules.

Again these are preliminary studies, and there are many things on which we need
to improve. Our method for identifying PEEE is ad hoc and dated; better methods from
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time-series analysis will likely yield better PEEEs. The overlap scores can also be im-
proved upon by doing alignment and maximal overlaps for example.

The biggest goal in front of us is building the regulation hierarchies from static
expression data, of which there is thousands of available sets for yeast. If that is possible,
the resulting expression hierarchy would have many more edges, as the genes would
have been exposed to significantly more conditions than the ones in the data we used.

The regulation hierarchies are not ends in themselves but stepping stones toward
identifying interactions between genes and gene products on a large-scale. In particular,
they can be used jointly with gene expression data to limit the in-degree of nodes during
network inference, which can speed up the process significantly.
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Abstract. In this study we propose a novel model for the representation of bi-
ological networks and provide algorithms for learning model parameters from
experimental data. Our approach is to build an initial model based on extant
biological knowledge, and refine it to increase the consistency between model
predictions and experimental data. Our model encompasses networks which con-
tain heterogeneous biological entities (mRNA, proteins, metabolites) and aims to
capture diverse regulatory circuitry on several levels (metabolism, transcription,
translation, post-translation and feedback loops among them).
Algorithmically, the study raises two basic questions: How to use the model for
predictions and inference of hidden variables states, and how to extend and rec-
tify model components. We show that these problems are hard in the biologi-
cally relevant case where the network contains cycles. We provide a prediction
methodology in the presence of cycles and a polynomial time, constant factor
approximation for learning the regulation of a single entity. A key feature of our
approach is the ability to utilize both high throughput experimental data which
measure many model entities in a single experiment, as well as specific experi-
mental measurements of few entities or even a single one. In particular, we use
together gene expression, growth phenotypes, and proteomics data.
We tested our strategy on the lysine biosynthesis pathway in yeast. We con-
structed a model of over 150 variables based on extensive literature survey, and
evaluated it with diverse experimental data. We used our learning algorithms to
propose novel regulatory hypotheses in several cases where the literature-based
model was inconsistent with the experiments. We showed that our approach has
better accuracy than extant methods of learning regulation.

1 Introduction

Biological systems employ heterogeneous regulatory mechanisms that are frequently
intertwined. For example, the rates of metabolic reactions are strongly coupled to the
concentrations of their catalyzing enzymes, which are themselves subject to complex
genetic regulation. Such regulation is in turn frequently affected by metabolite concen-
trations. Metabolite-mRNA-enzyme-metabolite feedback loops have a central role in
many biological systems and exemplify the importance of an integrative approach to
the modeling and learning of regulation.
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In this work we study steady state behavior of biological systems that are stimu-
lated by changes in the environment (e.g., lack of nutrients) or by internal perturbations
(e.g., gene knockouts). Our model of the system contains variables of several types,
representing diverse biological factors such as mRNAs, proteins and metabolites. In-
teractions among biological factors are formalized as regulation functions which may
involve several types of variables and have complex combinatorial logic. Our model
combines metabolic pathways (cascades of metabolite variables), genetic regulatory
circuits (sub-networks of mRNAs and transcription factors protein variables), protein
networks (cascades of post-translational interactions among protein variables), and the
relations among them (metabolites may regulate transcription, enzymes may regulate
metabolic reactions). We show how such models can be built from the literature and de-
velop computational techniques for their analysis and refinement based on a collection
of heterogeneous high-throughput experiments. We develop algorithms to learn novel
regulation functions in lieu of ones that manifest inconsistency with the experiments.

Most current approaches to the computational analysis of biological regulation fo-
cus on transcriptional control. Both discrete (e.g., [3]) and probabilistic methods (e.g.,
[9]) use gene expression data and attempt to learn a regulatory structure among genes
and to create a predictive model that fits the data. The computational models used in
these studies involve numerous simplifying assumptions on the nature of genetic reg-
ulation. Among the more problematic of these simplifications are a) the use of mRNA
levels to model the activity of transcription factor proteins, b) the lack of consideration
for the state of the medium in which the experiment was done and c) the assumption
of acyclic regulation structure that prevents the adequate modeling of feedback loops.
As a consequence of these limitations, simple genetic networks tools are rarely used in
practical biological settings. A more fruitful approach for learning regulation involves
the coarser notion of regulatory modules, with [14] or without [1, 17] explicit learning
of regulatory functions that define them. Module-based methods are relatively robust to
noise and in some cases can tolerate the gross simplification described above. However,
models generated by these methods are coarse and limited in their level of detail.

Our study aims to overcome some of the limitations of prior art by taking an ap-
proach that is innovative in combining several key aspects:

• We model a variety of variables types, extending beyond gene network studies, that
focus on mRNA, and metabolic pathways methods, that focus on metabolites. Conse-
quently, our model can express the environmental conditions and the effects of transla-
tion regulation and post translational modifications.

• Our approach allows handling feedback loops as part of the inference and learning
process. This is crucial for adequate joint modeling of metabolic reactions and genetic
regulation.

• We build an initial model based on prior knowledge, and then aim to improve (expand)
this model based on experimental data. A similar approach was employed in [16] for
transcription regulation only. We show that formal modeling of the prior knowledge
allows the interpretation of high throughput experiments on a new level of detail.

• Our algorithms learn new transcription regulation functions by analyzing together
gene expression, protein expression and growth phenotypes data.
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Our methodologies and ideas were implemented in a new software tool called
MetaReg. It facilitates evaluation of a model versus diverse experimental data, detec-
tion of variables that manifest inconsistencies between the model and the data, and
learning optimized regulation functions for such variables. We used MetaReg to study
the pathway of lysine biosynthesis in yeast. We performed an extensive literature sur-
vey and organized the knowledge on the pathway into a model consisting of about 150
variables. In the process of model construction, we reviewed the results of many low
throughput experiments and included in the model the most plausible regulation func-
tion of each variable. We assessed the model versus a heterogeneous collection of exper-
imental results, consisting of gene expression, protein expression and phenotype growth
sensitivity profiles. In general, the model agreed well with the observations, confirming
the effectiveness of our strategy. In several important cases, however, inconsistencies
between measurements and model predictions indicated gaps in the current biological
understanding of the system. Using our learning algorithm we generated novel regu-
lation hypotheses that explain some of these gaps. We also showed that our method
attains improved accuracy in comparison to extant network learning methods.

The paper is organized as follows. In Section 2 we introduce the model and define
some notation. In Section 3 we show how to take feedback loops into account and
how to use the model to infer the system state given an environmental stimulation. In
Section 4 we introduce our mathematical formulation of experimental data and model
scoring scheme and in Section 5 we develop optimization algorithms for the learning
of regulation functions. Section 6 presents our results on the lysine pathway and its
regulation.

2 The Model

We first define a formal model for biological networks. A model M is a set U of vari-
ables, a set S = {1, . . . , k} of discrete states that the variables may attain, and a set of
regulation functions fv : S|N(v)| → S for each v ∈ U . fv defines the state of a regu-
lated variable v (called a regulatee) as a function of the states of its regulator variables
N(v) = {r1

v, . . . , rdv
v }. We define the set of stimulators UI to include all variables with

zero indegree. The model graph of M is the digraph GM = (U, A) representing the
direct dependencies among variables, i.e., (u, v) ∈ A iff u ∈ N(v). For convenience
we assume throughout that regulation functions can be computed in constant time.

A model state s is an assignment of states to each of the variables in the model,
s : U → S. A model stimulation is an assignment of states to all the model stimulators,
q : UI → S.

In this paper we shall use the model logic primarily for the determination of modes.
For a model M and state s, we say that s agrees with M on v if fv(s(r1

v), . . . , s(rdv
v )) =

s(v). We call a model state s of M a mode if s agrees with M on every v ∈ U \ UI . A
mode is thus a steady state of the system. States representing non-steady state behavior
of the system, which may be adequate for the representation of temporal processes, are
outside the scope in this work. Since our biological models represent a combination of
diverse regulation mechanisms, operating in different time scales (metabolic reactions
are orders of magnitude faster than transcription regulation), a realistic temporal model
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is a considerable challenge that should be carefully dealt with in future work. The steady
state assumption is in wide use (e.g., [3, 9]) and was proved flexible enough in our
empirical studies. Figure 1 illustrates a simple model and its modes.

Fig. 1. A simple model. The model includes one stimulator X, regulating a positive feedback loop
of two variables Y and Z. We assume a binary state space (on-dark, off-light). fz is the identity
function and fy = s(x) AND s(z). When the stimulator state is off (A), a unique mode exists.
If the stimulator state is on (B), two different modes are possible, one in which the cycle is on
and the other in which the cycle is off.

We now describe the biological semantics of a model. V includes four types of vari-
ables: (a) mRNAs (b) active proteins that serve as enzymes or regulators (c) internal
metabolites, which represent the metabolite derivatives in the pathway under study (d)
external metabolites, which represent different environmental conditions and specify
the nutritional concentrations in the medium. The external metabolites are assumed to
be determined by the experimenter, and their level is unaffected by other variables in the
model, so they will serve as part of our stimulator set. The levels of the mRNAs, proteins
and internal metabolites are controlled by other variables via regulation functions that
manifest transcriptional, translational, post-translational and metabolic control mecha-
nisms. The stimulators determine the ”boundary condition” of the model. For example,
in lysine metabolism, the level of the internal lysine metabolite is influenced by lysine
transport into the cell, by the yield of the lysine biosynthetic pathway, by the rate of
lysine degradation, and by the rate of lysine utilization in proteins biosynthesis. The
external lysine level, on the other hand, is assumed to be determined and kept fixed by
the experimenter throughout the experiment.

3 Computing Modes

Given a model stimulation q we would like to compute the set of model’s modes whose
stimulators states coincide with those of q. This will be the first step in using a model
to infer the state of the system under a certain condition.

A q-mode of a model M and stimulation q is a mode m such that for each v ∈ UI ,
q(v) = m(v). We denote the set of q-modes by Qq,M . A model M with acyclic graph
GM is called a simple model. We note that q-modes are unique and easily computable
for simple models: Given a stimulation q and a topological ordering on the graph’s
nodes (which exists, since the graph is acyclic), we can compute the q-mode by calcu-
lating the state of each variable given its regulators’ states. In summary:
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Claim. Let M be a simple model where GM = (U, A). For any stimulation q, there is
a unique q-mode that can be computed in time O(|U | + |A|).

In practice, model graphs are not acyclic and feedback loops play a central role in
system functionality. In cyclic models, a stimulation q may have no q-modes (in case
no steady state is induced by the stimulation), a unique q-mode, or several q-modes.
In order to compute the set of q-modes we will first transform a cyclic model into a
simple one. Recall that a feedback set in a directed graph is a set of nodes whose re-
moval renders the graph acyclic [6]. A feedback set of a model M is a feedback set for
the graph GM . Given a feedback set F , the auxiliary model MF is obtained by chang-
ing the regulation functions of the variables in F to null. The graph GMF is updated
accordingly and becomes acyclic, so MF is simple. Given a set F ′ ⊆ F , we say that
a mode m′ of MF is (M, F ′)-compatible if m′ agrees with M on every v ∈ F ′. In
particular, a mode of MF which is (M, F )-compatible is also a mode for M , since the
steady state requirements hold for every v ∈ U \ F (by definition of MF modes) and
for all v ∈ F (due to the compatibility). Given a mode for MF , it is easy to check if it
is (M, F ′)-compatible by calculating fv for each v ∈ F ′. The following algorithm cal-
culates the q-modes of M by using a feedback set F and a topological ordering of GMF :

Mode Computation Algorithm
• Generate each possible state assignment to F . For the assignment sF : F → S
do the following:

− Generate a stimulation q′ for MF by joining q and sF .
− Use the topological ordering to compute a (unique) q′-mode m′.
− If m′ is (M, F )-compatible, add it to Qq,M .

Hence, we have shown:

Proposition 1. Given a model M , a feedback set F , and a stimulation q, the q-modes
can be computed in O(k|F |(|U | + |A|)) time.

We note that the minimum feedback set problem is NP-hard [12], but approximation
algorithms are available [15]. The complexity of our algorithm is exponential in the size
of the feedback set, but this is tolerable for the current models we have analyzed. Much
larger systems may require heuristics that avoid the exhaustive enumeration of feedback
set states we are currently using.

4 Experimental Conditions and Their Inferred Modes

An ultimate test for a model is its ability to predict correctly the outcome of biological
experiments. We formally represent the data of such experiments as conditions. A con-
dition e is a triplet (eq, ep, es). eq is a model stimulation defining the environment in
which the experiment was performed. ep is a partial assignment of states to variables in
U \UI , and is called a perturbation. A perturbation defines a set of variables whose reg-
ulation was kept as a particular constant during the experiment. For example, knockout
experiments fix the state of mRNAs to zero. es is a set of measurements of the states



Modeling and Analysis of Heterogeneous Regulation in Biological Networks 103

of some variables, and is called an observed partial state. We define es(v) = −1 for
variables that were not measured in the experiment. Low throughput experiments (like
northern blot or ELISA) typically measure one or few variables in a given condition.
High throughput experiments (e.g., gene expression arrays or protein expression pro-
files) may measure the states of all variables of a particular type. A different type of
high throughput experiments are growth sensitivity mutant arrays [4]. Each such array
corresponds to many conditions, all with the same stimulation (representing the en-
vironment of the experiment), but with different perturbations (different knocked-out
genes), and only a single measured variable: the growth level. We will assume that this
level corresponds to the yield of the metabolic pathway under study.

Given a condition e we wish to use a model M to compare the possible modes in-
duced by the stimulation eq with the observed partial state. If the condition involves a
perturbation, we first have to update our model accordingly. For simplicity assume this
is not the case. We then apply the algorithm from the previous section and compute the
set of all eq-modes. In case more than one exists, we expect the correct one to be most
similar to the observed partial state. To assess this similarity we introduce a score func-
tion that equals the sum of squared differences between the observed partial state es

and a eq-mode. Precisely, given a condition e and an eq-mode s, we define the discrep-
ancy D(s, e) as

∑
v∈U,es(v) �=−1(s(v) − es(v))2. The mode with smallest discrepancy

will be considered as our inferred mode. Its score is called the model discrepancy on
condition e, i.e., D(M, e) = mins∈Qeq,M D(s, e). If no eq-mode exists, D(M, e) is set
to a large constant K . Note that models with loosely defined regulation functions may
have a large number of modes per stimulation and consequently suffer from over-fitting
of the inference.

5 Learning Regulation Functions

Given a model and experimental conditions, we wish to optimize one particular reg-
ulation function in the model and in this way derive an improved model with lower
discrepancy. In this section we discuss the resulting function optimization problem, and
show that this problem is NP-hard. We translate the function optimization problem to
a combinatorial problem on matrices, and provide a polynomial-time greedy algorithm
for it. Finally, we show that the greedy algorithm guarantees a 1/2-approximation for a
maximization variant of the function optimization problem.

We focus on one model variable v and fix the set of v’s regulators {r1
v, ...r

dv
v }. Let

E = {ei} be the set of experimental conditions. In order to simplify the presentation, we
assume throughout this section that experimental conditions have empty perturbation
sets. Given a function g : Sdv → S we define M(g, v) to be the model M with the
single change that fv = g. The discrepancy score of g is defined as

∑
i D(M(g, v), ei).

Problem 1. The function optimization problem. The problem is defined with respect
to a model M , a set of conditions E and a variable v ∈ U . The goal is to find a regulation
function fv = g with an optimal discrepancy score. In other words, we wish to compute
argming

∑
i D(M(g, v), ei).

In most extant gene networks models [9, 3, 16], an optimal regulation function can
be easily learned given the topology of the network. This is done using the multiplic-
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ities (or probabilities) of different combinations of observed states for the regulators
and regulatee. The main difficulty with our version of the learning problem is that the
states of regulators are frequently not observed, and have to be inferred together with
the regulation function. A naive algorithm can test all kkdv

functions for the best dis-
crepancy, but this strategy is impractical even for modest k and dv (333

> 1012). In fact,
the optimization problem is NP-hard (we omit the proof here).

Proposition 2. The function optimization problem is NP hard.

We shall translate the function optimization problem to a combinatorial problem
on matrices and develop an approximation algorithm to solve it. First, we define an
auxiliary matrix and show how to construct it. We define Qv

q,M as the set of model
states s which satisfy for all u ∈ UI , s(u) = q(u) and agree with M on all u ∈
U \ UI , u 	= v. Note that Qv

q,M is a superset of the set of q-modes Qq,M in which we
relax the requirement for agreement on v. Given an instance of the learning problem,
we form a matrix W v with a column for each condition and a row for each assignment
of states to v and its regulators. Let r = (r1

v , . . . rdv
v ), x = (x1, . . . , xdv ). We define

the matrix entry wv
i,((x1,...,xdv ),x) as min{D(s, ei

s)|s ∈ Qv
ei

q,M , s(r) = x, s(v) = x} or

a large constant K if the minimization set is empty. In the following algorithm, we
show how to compute W v by relaxing the requirement for v compatibility in the mode
computation algorithm. Later we shall show how to use W v to compute the discrepancy
score.

Matrix Construction Algorithm
• Initialize all entries in W v to K .
• Form a feedback set F such that v ∈ F .
• For each condition i and for each assignment sF of states of the feedback set do:

− generate a stimulation q′ for MF by joining ei
q and sF .

− use a topological ordering on GMF to compute a (unique) q′-mode m′ for MF .
− If m′ is (M, F \ v)-compatible, compute its discrepancy x.
− Replace the entry wv

i,((m′(r1
v),...,m′(rdv

v )),m′(v))
by x if the latter is smaller.

Lemma 1. Given a model M , a set of conditions E and a feedback set F such that
v ∈ F , the Matrix Construction Algorithm correctly computes the matrix W v in

O(kdv+1|E| + k|F |(|U | + |A|)|E|).
Proof. Matrix entries are computed by minimization of discrepancies over all (M, F \
v)-compatible modes that have a given regulator/regulatee states. But (M, F \ v)-
compatible modes are exactly the modes in Qv

ei
q,M which are used in W v’s definition.

Therefore, the algorithm correctly computes W v. The algorithm spends O(kdv+1|E|)
(the size of W v) time in initialization and O(k|F |(|U | + |A|)|E|) time to compute all
mode discrepancies.

Lemma 2. The discrepancy score of a regulation function g equals

|E|∑
i=1

min
x∈Sdv

wv
i,(x,g(x)).
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By the last lemma, the scores of all possible regulation functions can be derived
from the matrix W v. To find the optimal function we first translate the problem to the
following combinatorial problem:

Problem 2. The Rows Subset Cover Problem. We are given a non-negative integer
valued n × m matrix W and a partition of the rows to disjoint subsets B1, . . . , Bl. A
row subset R is a set of rows bR

1 ∈ B1, b
R
2 ∈ B2, . . . , b

R
l ∈ Bl. Our goal is to find a

row subset with maximal score c(R) =
∑m

j=1 maxl
i=1 wbR

i ,j .

In our settings, rows are pairs (x, x) and columns are conditions. The subsets Bj are
the sets of rows with identical regulator states x. To formulate the function optimization
problem as a row subset cover problem we rewrite wij = K − wv

ij . A selection of
bi = (x, x) corresponds to the setting of fv(x) = x.

The previous discussion implies that for constant value of dv and k, the row subset
cover problem is NP-hard. A Greedy Row Subset Algorithm applies naturally to this
problem: We start with an arbitrary row subset S, and repeatedly substitute a row to
improve the score, i.e., setting S ← (S \ {bS

i }) ∪ {b′i} where b′i ∈ Bi and the new S
has improved score. The algorithm terminates in a local optimum when no single row
substitution can improve the score. Since the score increases at each iteration and all
scores are integers bounded by K , the greedy algorithm will terminate after O(nmK)
steps. For the function optimization problem, O(|E||U |k2) is an upper bound on the
maximal score and hence on the number of steps. Each step costs O(|E|kdv+1) in order
to find an improving substitution, and thus the total cost is O(|E|2|U |kdv+3).

Proposition 3. The greedy algorithm guarantees a 1/2-approximation for the Row Sub-
set Cover Problem.

We omit the proof here. Note that in practice, we find regulation functions by exe-
cuting the matrix construction algorithm and applying the greedy algorithm to the ob-
tained matrix. In order to take condition perturbations into account, we have to consider
a slightly different model in each condition. For example, if a condition was measured
in a strain knocked-out for a specific gene v, we will form a modified model with altered
(constant) fv function and compute its modes and discrepancy as described above. The
other algorithms (matrix generation and row selection) remain unchanged.

6 Results

We applied the MetaReg modeling scheme and algorithms to study lysine biosynthesis
in the yeast S. cerevisiae. This system was selected since a) it is a relatively simple
metabolic pathway, b) its regulatory mechanisms are relatively well understood, and c)
several high throughput datasets which include experimental information pertinent to
lysine biosynthesis are available.

6.1 A Model for Lysine Biosynthesis

We have performed an extensive literature survey and constructed a detailed model for
lysine biosynthesis and related regulatory mechanisms. Lysine, an essential amino acid,
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is synthesized in S. cerevisiae from α-ketoglutarate via homocytrate and α-aminoad-
ipate semialdehyde (αAASA) in a linear pathway in which eight catalyzing enzymes
are involved. The production of lysine is controlled by several known mechanisms:

(1) Control of enzymes transcription via the general regulatory pathway of amino acids
biosynthesis. Starvation for amino acids, purines and glucose, induce the synthesis
of GCN4ap1 which is a transcriptional activator of enzymes catalyzing amino acids
biosynthesis in several pathways, including lysine. GCN4ap is controlled on the trans-
lation level by the translation initiation machinery. Specifically, GCN2ap (a translation
initiation factor 2α kinase) is known to mediate the de-repression of GCN4m translation
in nutrient-starved cells. The activity of GCN2ap is induced by high levels of uncharged
tRNA under starvation conditions [5].

(2) Transcription control of several catalyzing enzymes is regulated by αAASA. The
control is mediated by the LYS14ap transcriptional activator in the presence of αAASA,
an intermediate of the pathway acting as a coinducer. αAASA serves as a sensor of
lysine production [13].

(3) Feedback inhibition of homocytrate synthase isoenzymes (LYS20ap and LYS21ap)
by lysine. The first step of the lysine biosynthetic pathway is catalyzed by LYS20ap and
LYS21ap. At high levels of lysine, LYS20ap and LYS21ap are inhibited, and thus the
production of the pathway intermediates and of lysine itself is reduced [8].

(4) MKS1ap down-regulates CIT2m expression and hence cytrate-synthase production
which is needed for the synthesis of α-ketoglutarate. The resulting limitation of α-
ketoglutarate decreases the rate of lysine synthesis. MKS1ap is activated in nutrient-
starved cells [7, 18].

In Figure 2, we present the model graph of lysine biosynthesis as described above.
The graph includes the lysine biosynthetic pathway, the catalyzing enzymes and their
transcription control, and the translation initiation machinery controlling GCN4ap state.
The model includes also external amino acids and ammonium (NH3). These are needed
as stimulators to represent the environmental conditions enforced on the system. The
transport of amino acids and ammonium into the cell is facilitated via specific perme-
ases, and the level of internal amino acids and ammonium is determined by the extra-
cellular metabolites and by the activity of these permeases. The state of internal lysine
depends on the lysine transport into the cell and on the yield of the lysine biosynthetic
pathway. Note that in order to study the model in relative isolation from other pathways
and regulatory systems, we had to exclude some of the known relations (e.g., CIT2 and
the Kreb cycle in α-ketoglutarate production, tRNAs in GCN2ap activation). The model
graph contains several cycles that correspond to three distinct feedback cycles: general
nitrogen control regulation (e.g. GCN2ap → GCN4ap → LYS1,9m → LYS1,9ap →
ILys → GCN2ap), lysin negative regulation (LYS20ap/LYS21ap → IHomoCytrate →
αAASA → ILys → LYS20ap/LYS21ap) and αAASA positive regulation (e.g. LYS14ap
→ LYS2m → LYS2ap → αAASA → LYS14ap). We used a feedback set F consist-
ing of GCN2ap and IαAASA in all the computations reported below. The complete

1 We use variable affixes to indicate types. m suffix: mRNA, ap suffix: active protein. Metabo-
lites names are prefixed to indicate their type, I: internal, E: external.
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Fig. 2. The model graph of lysine biosynthesis in S. cerevisiae. Variables are represented by
nodes. Arcs lead from each regulator to its regulatees. All arc directions are at any angle to the
right or straight down, unless otherwise indicated. The model includes also a regulation func-
tion for each regulated variable. These functions are not shown here. Node colors indicate the
mode inferred states and the observed states in condition of nitrogen depletion after 2 days. In-
ternal node color: inferred state. Node boundaries: observed state. Red(dark): state= 2. Dark
pink(grey): 1. Light pink(light grey): 0. The representation enables us to view the disagreements
as color contrasts between the observed and inferred states. For example, LYS9m (bottom right)
inferred state is 2 while its observed state is 1.

and annotated list of regulation functions that are part of the model, is available upon
request.

We used the state space S = {0, 1, 2}. In our experiments, the definition of compat-
ibility used for the calculation of q-modes was relaxed a bit to include also cases where
m′(v) and fv(m′(r1

v), . . . , m′(rdv
v )) are both non-zeros (i.e., cases where inferred state

was 1 and observation 2 or vice versa are not considered violation of compatibility). In
other words, D(i, j) was (i− j)2 for all states {i, j} 	= {1, 2}, but D(1, 2) and D(2, 1)
were set to 0. This was done to allow more flexibility in the model and to focus more
on major discrepancies.

6.2 Data Preparation

We formed a heterogeneous dataset from five different high-throughput experiments:
(a) 10 expression profiles in nitrogen depletion medium after 0.5h, 1h, 2h, 4h, 8h, 12h,
1d, 2d, 3d, 5d of incubation [10]. (b) 5 expression profiles in amino acid starvation after
0.5h, 1h, 2h, 4h, 6h of incubation [10]. (c) 10 microarray experiments of His and Leu
starvations and various GCN4 perturbations [5]. (d) protein and mRNA profiles of wild
type strain in YPD and minimal media [19]. (e) 80 Growth sensitivity phenotypes [4].
The growth phenotypes were measured for each of a collection of ten gene-deletion
mutant strains in eight conditions: Lys, Trp and Thr starvation, three minimal media
and two YPG conditions.
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Fig. 3. Caption on page 109
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To incorporate these data into our framework, we generated conditions from each of
the experiments. To this end, we identified the stimulation and perturbation that match
each experiment from the respective publication. We then converted the data into a set
of observed states.

6.3 Model Discrepancy

For each of the high throughput conditions in (a) through (d) we computed inferred
modes and compared them to the observed states. Recall that the environment defined
by the condition’s stimulation gives rise to a set of possible inferred modes, and we
choose the inferred mode which fits the observed states best. Typically, there are only
few modes per condition in the lysine model, confirming the relatively good character-
ization of the system by the model.

Figure 3A summarizes the comparison between inferred modes and observed states
for expression conditions. Figure 3B does the same for growth sensitivity data. In gen-
eral, there is good agreement between the inferred and observed states. The matrix view
highlights conditions and variables in which the observations deviate from the model
predictions.

Before analyzing the deviations, we verified the specificity of the total discrepancy.
Since the mode computation algorithm involves selection of one mode from several
possibilities in each condition, we wanted to verify that this process does not cause over-
fitting. To this end, we generated randomly shuffled data sets in which we swapped the
states between variables of the same type. Figure 3C shows the discrepancy distribution
obtained from this experiment, and supports the high specificity of the lysine model
discrepancy.

We next examined the biological implication of two major deviations of the infer-
ence from the experimental data: First, the transcription of the translation initiation ma-
chinery (GCD1,2,6,7,11, GCN1,20, SUI2,3) is repressed in the later phases (8h-5d) of
the nitrogen depletion experiment, and this effect is not predicted by the model. More-
over, the transcription of the ammonium permeases MEP1 and MEP2 is consistently

Fig. 3. Model Discrepancy (A) Discrepancy matrix for the expression data. Columns correspond
to conditions and rows correspond to mRNA variables. Each cell contains two small squares:
observed (left) and inferred (right) states of the row variable in the column condition. State col-
ors: Cyan (light gray):0, light blue (gray):1, dark blue (black):2. The background color of the
cells emphasizes critical disagreement, where the inferred state is zero and the observed state is
not (green or light gray), or vice versa (red or gray). (B) Discrepancy matrix for the phenotype
data. Each cell represents a condition, which is a combination of certain environmental nutrients
and one gene deletion. Columns correspond to the nutritional environment (i.e., the medium),
and rows correspond to the knocked-out variable. Each cell contain two small squares: observed
(left) and inferred (right) state of the internal lysine metabolite (the ILys variable) in this condi-
tion. Colors are as in (A). (C). Distribution of model discrepancy scores for randomly shuffled
data sets. X axis: total model discrepancy. We generated the distribution by computing model
discrepancy for 50 random data sets. The discrepancy of the real data set is 494 (arrow), much
lower than the minimal discrepancy measured in the shuffled sets.
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activated in nitrogen depletion. To the best of our knowledge, the explanation for these
observations is still unclear. However, there is some evidence for involvement of the
TOR signaling pathway in the regulation of this response [2]. Second, the transcrip-
tion of the lysine biosynthesis catalyzing enzymes is known to be activated by both
LYS14ap and GCN4ap, but the exact combinatorial regulation function is unknown.
Since they are both known to be activators, we originally modeled the regulation func-
tion of the catalyzing enzymes (LYS1,2,9,20,21) simply as the sum of LYS14ap and
GCN4ap. In most catalyzing enzymes, there is a clear inference deviation in two condi-
tions with GCN4Δ strain (Figure 3A, 3rd and 6th columns from right). In addition, the
growth phenotypes of LYS14 deletion strain (Figure 3B, second row) deviate from their
inferred states in all conditions with nutritional limitation of lysine. Therefore, the reg-
ulation function we originally modeled for the lysine biosynthesis catalyzing enzymes
is apparently not optimal.

6.4 Learning Improved Regulation Functions

To refine our understanding of the combinatorial regulation scheme involving LYS14ap
and GCN4ap we applied our learning algorithm to the regulation functions of LYS1,2,4,
5,9,12,20,21. For each one, we computed the discrepancy matrix and selected an opti-
mal regulation function using the learning algorithm outlined in Section 5. To estimate
the confidence of our learned functions we used a bootstrap procedure as follows. We
generated 1000 datasets each containing a random subset of 80% of the original set of
conditions. For each random dataset we recalculated the optimal regulation functions
for each of the enzymes. The confidence of the function entry fv(x1, . . . , xdv ) = y was
defined as the fraction of times y was learned as the function value for the regulators
values x1, . . . , xdv . In case of ties (several function outcomes with equal scores), we
split the count among the candidate outcomes. Results are summarized in Figure 4A,B.

Based on the optimal functions, we identify two enzyme sets that share a regula-
tory program. The expression of genes in the first set (LYS1,9,20 and possibly LYS4
and LYS21) is dependent on the presence of both LYS14 and GCN4. Both transcription
factors seems to drive the transcription of enzymes in this set linearly. The second set,
including LYS5, LYS12 and YJL200C require LYS14 but not GCN4 for basal expres-
sion levels. For LYS5 it seems that GCN4 may not be a regulator at all, possibly since
LYS5 is not a catalyzing enzyme in the pathway under study. We note that the com-
bination of expression and growth phenotype information was crucial for deriving this
conclusion. For example, when using expression data alone, the rows with LYS14p=0
are completely undefined.

6.5 Cross Validation

We tested the predictive quality of MetaReg by performing leave-one-out cross vali-
dation. For the test, we used the set of enzymes L = {LYS1,2,4,5,9,12,20,21m} as
regulatees and GCN4ap, LYS14ap, as regulators. For each variable v ∈ L and each
condition c, we optimized the regulation function of v while fixing the rest of the model
and hiding the data of c. We then used the optimized model to infer the mode in condi-
tion c without using the observed value of v. Finally, we compared the inferred state of
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the enzyme variable to the observed one, and counted the total number of correct out-
comes (or fractions of outcomes in case the inferred mode was ambiguous and several
alternatives existed). Using mRNA expression data only, the accuracy derived in this
procedure was 78.3% (Figure 4C).

We compared the performance of Metareg to the following alternative methods: (a)
A Bayesian networks [9] with a known structure where GCN4m and LYS4m are the
parents of each variable in L. We learned the local probability parameters [11] using
non-informative prior. To compute the accuracy, we ran a cross validation test by learn-
ing parameters while hiding one condition at a time. The overall accuracy obtained in
this procedure was 61.4%, much lower than achieved by MetaReg. (b) An indepen-
dence model: Each regulatee in L has no regulators. We predict the probability of each
regulatee outcome as the background distribution of its observations. To compute the
accuracy, we ran the same procedure as in (a). The overall accuracy obtained in this

Fig. 4. Learning regulation functions. (A) The optimal transcription regulation function of each
lysine biosynthesis pathway enzyme as a function of the states of the regulators GCN4ap and
LYS14ap. Each cell presents the state of a regulatee given the states of its regulators GCN4ap
(column) and LYS14ap (row). Cell colors indicate the regulatee states. Red (dark gray): state= 2.
Dark pink (gray): 1. Light pink (light gray): 0. We show only entries with over 90% confidence.
For combinations of regulators states that have lower confidence or were never present in the
inferred modes, we leave the corresponding entries of the optimal regulation function undefined.
(B) Confidences for the LYS2 function. Rows and columns are as in (B), values are the percent of
times in which the value was learned out of 1000 bootstrap experiments. (C) The accuracy of the
independence, Bayesian and MetaReg methods on the lysine biosynthesis pathway. The accuracy
is computed by cross validation on all expression conditions and the lysine biosynthesis pathway
enzymes.
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procedure was 47.5%. We conclude that the detailed modeling of interactions among
proteins, metabolites and mRNAs gives an improved accuracy to our model.

7 Discussion

Models of biological regulation are becoming increasingly complex. The well estab-
lished biological methodology of model development and expansion (incremental re-
finement) is facing major challenges with the advent of high throughput technologies
and the discovery of more and more regulatory mechanisms. Computational techniques
for modeling and learning biological systems are currently limited in their ability to
help biologists to extend their models: De-novo reconstruction methods ignore avail-
able biological knowledge, and module-based methods do not specify concrete regula-
tion functions. Here we aim at the construction of a computational methodology that
combines well with current biological methodologies. MetaReg models can be built
for almost any existing biological system, they do not assume complete knowledge of
the system, and are flexible enough to integrate diverse regulatory mechanisms. Once
built, the model allows easy integration of high throughput data into the analysis of the
existing model. The computational tools introduced here can then be used to generate
testable and easy to understand biological regulation hypotheses.
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